

Hydrodynamic Analysis of Fuel Motion in a Binary Bubbling Fluidized Bed using Markov Chains Method

Presenter: *Amirhossein Alivandlai* **Supervisor**: *Dr. Fotovat September 2023*

1

Outline

Introduction

• A brief overview of the Theoretical Foundations and Description of The Problem

Methods

• A brief overview of methods used

Results

• The Results of the modeling and the discussion on them

Conclusion

• Summarized Results

Highlights

- This Research centers on the analysis of large solid particle behavior within binary fluidized systems
- Markov Chains Method as a statistical methodology was employed to capture this phenomena
- Parameters from the Markov Chain model were computed in a semi-experimental approach using both the literature and experiments
- 3 Particular Markov Chains were modeled and compared using statistical distance
- The Concept of Restricted and Unrestricted Movements was used and validated

1. **Introduction**

- Fluidized Beds in Industry
- Using Fluidized Beds for Solid Fuel Conversion
- Binary Fluidized Beds and complexities added to the system

1. **Introduction**

• Binary Fluidization Systems For Biofuel particles

• Why Binary Fluidization

• Data at hand

Table 1 Properties of the bed materials.

- Radioactive Particle Tracking (RPT)
- In each experiment, the location of the tracer is tracked every 10 ms for about 4 h until around one and half million points are finally acquired.
- The excess superficial gas velocities, i.e. $(U_e = U U_{mf})$, chosen for the tests are U_e = 0.25 m/s and U_e = 0.50 m/s.

Table 2 Properties of the spherical objects.

Designation	Material	$d_{\rm o}$ (mm)	ρ_{o} (kg/m ³)
HDPE	HDPE	9.5	929
PTFE	PTFE	9.5	2166
Acetal-S	Acetal	4.8	1381
Acetal-M	Acetal	9.5	1368
Acetal-L	Acetal	19.0	1347

• Markov Chains Method

 $S_{i+1} = P(S_i)S_i$

(A) Graphical

(B) Matrix

 $S=\{1,2,\cdots,N\}$

2. **Methods**

• Markov Chains Method - Single Phase

$$
p_{i.i} = \alpha_i = (1 - \beta_i - \delta_i)
$$

\n
$$
p_{i.i-1} = \beta_i
$$

\n
$$
p_{i.i+1} = \delta_i
$$

\n
$$
p(n.j) = \sum_{i=1}^{N} p(n-1.i)p_{ij}
$$

• Markov Chains Method – Lumped

 $\mathbf{1}$

2. **Methods**

• Markov Chains Method – Two Phase

 $S = \{1, 2, \cdots, N\} \times \{0, 1\}$

$$
p_{(i,k)(i+1,k)} = \delta_i (1 - \lambda_i^{k,l}).
$$

\n
$$
p_{(i,k)(i-1,k)} = \beta_i (1 - \lambda_i^{k,l}).
$$

\n
$$
p_{(i,k)(i,k)} = \alpha_i (1 - \lambda_i^{k,l}) = (1 - \beta_i - \delta_i) (1 - \lambda_i^{k,l})
$$

\n
$$
p_{(i,k)(i,k-1)} = \lambda_i^{(k)}
$$

Wake Phase
(Phase 1, 'upward')

• Markov Chains Method – Three Phase

 $S = \{1, 2, \cdots, N\} \times \{0, 1, 2\}$ $p_{(i,k)(i-1,k)} = \beta_i^{(k)}(1 - \lambda_i^{k,l} - \lambda_i^{k,m}).$ $p_{(i,k)(i+1,k)} = \delta_i^{(k)}(1 - \lambda_i^{k,l} - \lambda_i^{k,m}).$ $p_{(i,k)(i,l)} = \lambda_i^{k,l}$. $p_{(i,k)(i,m)} = \lambda_i^{k,m}.$ $p_{(i,k)(i,k)} = \alpha_i^{(k)}(1 - \lambda_i^{k,l} - \lambda_i^{k,m})$ = $(1 - \beta_i^{(k)} - \delta_i^{(k)})(1 - \lambda_i^{k,l} - \lambda_i^{k,m})$

• Process of Modeling

• How to relate parameters to physical phenomena

$$
v\frac{\Delta}{\varepsilon} = \tilde{v}\left[\frac{m}{s}\right]. \qquad \left(\Delta \times \beta_i^{(k)} - \Delta \times \delta_i^{(k)}\right) \frac{1}{\varepsilon} = \left(\beta_i^{(k)} - \delta_i^{(k)}\right) \frac{\Delta}{\varepsilon} \qquad v_i = \beta_i^{(k)} - \delta_i^{(k)}
$$

$$
D\frac{\Delta^2}{\varepsilon} = \tilde{D}\left[\frac{m^2}{s}\right]. \qquad \left(\Delta^2 \times \beta_i^{(k)} + \Delta^2 \times \delta_i^{(k)}\right) \frac{1}{\varepsilon} = \left(\beta_i^{(k)} + \delta_i^{(k)}\right) \frac{\Delta^2}{\varepsilon} \qquad 2D_i = \beta_i^{(k)} + \delta_i^{(k)}
$$

Computing Procedure for β

$$
u_{s,down} = \frac{f_w \delta u_b}{(1 - \delta - f_w \delta)}
$$

Computing Procedure for δ

$$
\rho_o V_o \frac{dU_o}{dt} = \left(\rho_f - \rho_o\right) gV_o + \frac{1}{2} C_D A_o \rho_f \left(U_f - U_o\right)^2
$$

$$
C_D = \frac{24}{\text{Re}_o} \left(1 + \frac{Re_o^{2/3}}{6} \right) g(\varepsilon) \qquad Re < 1000
$$

$$
x\in\mathbb{R}^{n\times n}
$$

$$
C_D=0.44(\varepsilon)
$$

 $Re \geq 1000$

$$
Re_o = \frac{\rho_f |U_f - U_o| d_o}{\mu_f}
$$

$$
g(\varepsilon) = \varepsilon^{-\beta}
$$

$$
\beta = 3.7 - 0.65 \exp\left[\frac{-(1.5 - \log Re_o)^2}{2}\right]
$$

$$
\overline{U_o} = \frac{1}{\tau_r} \int_0^{\tau_r} U_o \, dt
$$

$$
u_b = 0.71 \sqrt{gD_e}
$$

$$
D_e = 0.54 (u - u_{mf})^{0.4} (z + 4\sqrt{A_0})^{0.8} g^{-0.2}
$$

Computing λ from Experimental Data

- In 2-Phase Model
	- Ratio of changing path
- In 3-Phase Model
	- How to divide the phases

Restricted & Unrestricted Movements

- Definition
- Usage
- Variances of RTD for Dispersion & Convection Mechanisms

- How to compute them
- What do they represent

$$
\sigma_t^2 = \left(\frac{2D_{sz}}{V_s^3}\right)L
$$

$$
\sigma_t^2 = \left(\frac{\sigma_\theta}{V_s}\right)^2 L^2
$$

Results for Acetal-S, $U_e = 0.25$ m/s

Lumped Markov Chains Results

0.25 Prediction Actual 0.2 Fraction of Occurence 0.05 Ω 22 24 32 26 28 30 Lengths (cm)

3. **Results**

Histogram of Restricted Downward Movements

Histogram of Unrestricted Upward Movements

Histogram of Restricted Upward Movements

Results for Acetal-S, $U_e = 0.25$ m/s

2-Phase Markov Chains Results

0.18 Prediction 0.16 Actual 0.14 Fraction of Occurence
Praction of 0.1
0.08
0.06 0.04 0.02 Ω 22 24 26 28 30 32 Lengths (cm)

3. **Results**

Histogram of Unrestricted Upward Movements

Histogram of Restricted Upward Movements

Histogram of Restricted Downward Movements

Results for Acetal-S, $U_e = 0.25$ m/s

3-Phase Markov Chains Results

0.2 Prediction 0.18 Actual 0.16 e 0.14

edge

edge

composition

composition 0.04 0.02 $\overline{0}$ 22 28 24 26 30 32 Lengths (cm)

3. **Results**

Histogram of Restricted Upward Movements Histogram of Unrestricted Upward Movements

Histogram of Restricted Downward Movements

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Downward Restricted Movements

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Upward Restricted Movements

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Downward Unrestricted Movements

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Upward Unrestricted Movements

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Axial Distribution of Particle occurence

Lumped Markov Chains

Coarse Sand Bed

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Axial Distribution of Particle occurence

Lumped Markov Chains

FCC Catalyst Bed

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Axial Distribution of Particle occurence

Lumped Markov Chains

Fine Sand Bed

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Axial Distribution of Particle occurence

2-Phase Markov Chains

Coarse Sand Bed

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Axial Distribution of Particle occurence

2-Phase Markov Chains

FCC Catalyst Bed

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Axial Distribution of Particle occurence

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Axial Distribution of Particle occurence

3-Phase Markov Chains

Coarse Sand Bed

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Axial Distribution of Particle occurence

3-Phase Markov Chains

FCC Catalyst Bed

Results for Acetal-S, $U_e = 0.25$ m/s

Comparing Results for Axial Distribution of Particle occurence

3-Phase Markov Chains

Fine Sand Bed

4. **Conclusion**

- This Research centers on the analysis of large solid particle behavior within binary fluidized systems
- Markov Chains Method as a statistical methodology was employed to capture this phenomena
- Parameters from the Markov Chain model were computed in a semi-experimental approach using both the literature and experiments
- 3 Particular Markov Chains were modeled and compared using statistical distance
- The Concept of Restricted and Unrestricted Movements was used and validated

Thanks for your attention Any Questions ?