

Hydrodynamic Analysis of Fuel Motion in a Binary Bubbling Fluidized Bed using Markov Chains Method

Presenter: Amirhossein Alivandlai Supervisor: Dr. Fotovat September 2023

Outline

Introduction

• A brief overview of the Theoretical Foundations and Description of The Problem

Methods

• A brief overview of methods used

Results

• The Results of the modeling and the discussion on them

Conclusion

• Summarized Results

Highlights

- This Research centers on the analysis of large solid particle behavior within binary fluidized systems
- Markov Chains Method as a statistical methodology was employed to capture this phenomena
- Parameters from the Markov Chain model were computed in a semi-experimental approach using both the literature and experiments
- 3 Particular Markov Chains were modeled and compared using statistical distance
- The Concept of Restricted and Unrestricted Movements was used and validated

1. Introduction

- Fluidized Beds in Industry
- Using Fluidized Beds for Solid Fuel Conversion
- Binary Fluidized Beds and complexities added to the system

1. Introduction

• Binary Fluidization Systems For Biofuel particles

Why Binary Fluidization

Data at hand

Table 1Properties of the bed materials.

Material	Particle size range (µm)	$d_{\mathrm{p,m}}\left(\mu\mathrm{m}\right)$	$ ho_{ m P}$ (kg/m ³)	$ ho_{ m b}~(m kg/m^3)$	Voidage (-) (fixed bed)	U_{mf} (m/s)	Geldart classification
Coarse sand	400-2000	770	2650	1350	0.49	0.44	B-D
Fine sand	50-700	220	2650	1406	0.47	0.05	В
FCC	30-300	80	1690	928	0.45	0.004	A

- Radioactive Particle Tracking (RPT)
- In each experiment, the location of the tracer is tracked every 10 ms for about 4 h until around one and half million points are finally acquired.
- The excess superficial gas velocities, i.e. $(U_e = U U_{mf})$, chosen for the tests are $U_e = 0.25$ m/s and $U_e = 0.50$ m/s.

Table 2Properties of the spherical objects.

Designation	Material	$d_{\rm o}~({\rm mm})$	$\rho_{\rm o} (\rm kg/m^3)$	
HDPE	HDPE	9.5	929	
PTFE	PTFE	9.5	2166	
Acetal-S	Acetal	4.8	1381	
Acetal-M	Acetal	9.5	1368	
Acetal-L	Acetal	19.0	1347	

Markov Chains Method

 $S_{i+1} = P(S_i)S_i$

(A) Graphical

(B) Matrix

 $S = \{1, 2, \cdots, N\}$

2. Methods

• Markov Chains Method – Single Phase

$$p_{i,i} = \alpha_i = (1 - \beta_i - \delta_i)$$

$$p_{i,i-1} = \beta_i$$

$$p_{i,i+1} = \delta_i$$

$$p(n,j) = \sum_{i=1}^{N} p(n-1,i)p_{ij}$$

• Markov Chains Method – Lumped

N

i + 1

i - 1

1

2. Methods

• Markov Chains Method – Two Phase

 $S = \{1, 2, \cdots, N\} \times \{0, 1\}$

$$p_{(i,k)(i+1,k)} = \delta_i (1 - \lambda_i^{k,l}).$$

$$p_{(i,k)(i-1,k)} = \beta_i (1 - \lambda_i^{k,l}).$$

$$p_{(i,k)(i,k)} = \alpha_i (1 - \lambda_i^{k,l}) = (1 - \beta_i - \delta_i)(1 - \lambda_i^{k,l}).$$

$$p_{(i,k)(i,k-1|)} = \lambda_i^{(k)}$$

Wake Phase (Phase¹, 'upward')

• Markov Chains Method – Three Phase

 $S = \{1, 2, \cdots, N\} \times \{0, 1, 2\}$

$$p_{(i,k)(i-1,k)} = \beta_i^{(k)} (1 - \lambda_i^{k,l} - \lambda_i^{k,m}).$$

$$p_{(i,k)(i+1,k)} = \delta_i^{(k)} (1 - \lambda_i^{k,l} - \lambda_i^{k,m}).$$

$$p_{(i,k)(i,l)} = \lambda_i^{k,l}.$$

$$p_{(i,k)(i,m)} = \lambda_i^{k,m}.$$

$$p_{(i,k)(i,k)} = \alpha_i^{(k)} (1 - \lambda_i^{k,l} - \lambda_i^{k,m})$$

$$= (1 - \beta_i^{(k)} - \delta_i^{(k)})(1 - \lambda_i^{k,l} - \lambda_i^{k,m})$$

• Process of Modeling

• How to relate parameters to physical phenomena

$$v\frac{\Delta}{\varepsilon} = \tilde{v} \left[\frac{m}{s}\right]. \qquad \left(\Delta \times \beta_i^{(k)} - \Delta \times \delta_i^{(k)}\right) \frac{1}{\varepsilon} = (\beta_i^{(k)} - \delta_i^{(k)}) \frac{\Delta}{\varepsilon} \qquad v_i = \beta_i^{(k)} - \delta_i^{(k)}$$
$$v_i = \beta_i^{(k)} - \delta_i^{(k)} \qquad v_i = \beta_i^{(k)} - \delta_i^{(k)} \qquad 2D_i = \beta_i^{(k)} + \delta_i^{(k)}$$
$$\frac{\Delta^2}{\varepsilon} = \tilde{D} \left[\frac{m^2}{s}\right]. \qquad \left(\Delta^2 \times \beta_i^{(k)} + \Delta^2 \times \delta_i^{(k)}\right) \frac{1}{\varepsilon} = (\beta_i^{(k)} + \delta_i^{(k)}) \frac{\Delta^2}{\varepsilon} \qquad 2D_i = \beta_i^{(k)} + \delta_i^{(k)}$$

Computing Procedure for eta

$$u_{s.down} = \frac{f_w \delta u_b}{(1 - \delta - f_w \delta)}$$

Computing Procedure for δ

$$\rho_o V_o \frac{dU_o}{dt} = \left(\rho_f - \rho_o\right) gV_o + \frac{1}{2} C_D A_o \rho_f \left(U_f - U_o\right)^2$$

$$C_D = \frac{24}{\text{Re}_o} \left(1 + \frac{Re_o^{2/3}}{6} \right) g(\varepsilon) \qquad Re < 0$$

 $C_D=0.44(\varepsilon)$

β

 $Re \geq 1000$

$$Re_o = \frac{\rho_f |U_f - U_o| d_o}{\mu_f}$$
$$g(\varepsilon) = \varepsilon^{-\beta}$$
$$\beta = 3.7 - 0.65 exp^{\left[-\frac{(1.5 - \log Re_o)^2}{2}\right]}$$

$$\overline{U_o} = \frac{1}{\tau_r} \int_0^{\tau_r} U_o \, dt$$

$$u_b = 0.71 \sqrt{g D_e}$$
$$D_e = 0.54 (u - u_{mf})^{0.4} (z + 4\sqrt{A_0})^{0.8} g^{-0.2}$$
₁₃

Computing λ from Experimental Data

- In 2-Phase Model
 - Ratio of changing path
- In 3-Phase Model
 - How to divide the phases

Restricted & Unrestricted Movements

- Definition
- Usage
- Variances of RTD for Dispersion & Convection Mechanisms

Validity of Mechanisms using Restricted & Unrestricted Movements

- How to compute them
- What do they represent

$$\sigma_t^2 = \left(\frac{2D_{SZ}}{V_s^3}\right)L$$
$$\sigma_t^2 = \left(\frac{\sigma_\theta}{V_s}\right)^2 L^2$$

Results for Acetal-S, $U_e = 0.25 m/s$

Lumped Markov Chains Results

0.250.20.150.150.150.150.100.150.100.150.100.150

3. Results

Histogram of Restricted Downward Movements

Histogram of Unrestricted Upward Movements Histogram of Restricted Upward Movements

Results for Acetal-S, $U_e = 0.25 m/s$

2-Phase Markov Chains Results

0.18 Prediction 0.16 Actual 0.14 0.04 0.02 0 22 24 26 28 30 32 Lengths (cm)

3. Results

Histogram of Unrestricted Upward Movements Histogram of Restricted Upward Movements Histogram of Restricted Downward Movements

Results for Acetal-S, $U_e = 0.25 m/s$

3-Phase Markov Chains Results

0.2 Prediction 0.18 Actual 0.16 0.14 0.12 0.01 0.01 0.08 0.06 0.04 0.02 0 22 24 26 28 30 32 Lengths (cm)

3. Results

Histogram of Restricted Downward Movements

Histogram of Unrestricted Upward Movements Histogram of Restricted Upward Movements

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Downward Restricted Movements

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Upward Restricted Movements

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Downward Unrestricted Movements

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Upward Unrestricted Movements

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Axial Distribution of Particle occurence

Lumped Markov Chains

Coarse Sand Bed

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Axial Distribution of Particle occurence

Lumped Markov Chains

FCC Catalyst Bed

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Axial Distribution of Particle occurence

Lumped Markov Chains

Fine Sand Bed

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Axial Distribution of Particle occurence

2-Phase Markov Chains

Coarse Sand Bed

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Axial Distribution of Particle occurence

2-Phase Markov Chains

FCC Catalyst Bed

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Axial Distribution of Particle occurence

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Axial Distribution of Particle occurence

3-Phase Markov Chains

Coarse Sand Bed

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Axial Distribution of Particle occurence

3-Phase Markov Chains

FCC Catalyst Bed

Results for Acetal-S, $U_e = 0.25 m/s$

Comparing Results for Axial Distribution of Particle occurence

3-Phase Markov Chains

Fine Sand Bed

4. Conclusion

- This Research centers on the analysis of large solid particle behavior within binary fluidized systems
- Markov Chains Method as a statistical methodology was employed to capture this phenomena
- Parameters from the Markov Chain model were computed in a semi-experimental approach using both the literature and experiments
- 3 Particular Markov Chains were modeled and compared using statistical distance
- The Concept of Restricted and Unrestricted Movements was used and validated

Thanks for your attention Any Questions ?