

Computational Fluid Dynamics (CFD)

Introductory Course

Session 02 – Review of Vector Calculus

Lecturer: Amirhossein Alivandi March 2023

Syllabus :

- Session 01 Basic Concepts of CFD
- Session 02 Review of Vector Calculus
- Session 03 Introduction to Numerical Methods
- Session 04 Mathematical Description of Physical Phenomena Part 01
- Session 05 Mathematical Description of Physical Phenomena Part 02

1. Vector and Vector Operations

□ Velocity Vector as the frequently used

- Unit vectors
- □ Column format
- □ Transpose of vectors
- □ The Magnitude of the vector

$$\mathbf{v} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} \qquad \mathbf{v}^{\mathrm{T}} = \begin{bmatrix} u & v & w \end{bmatrix}$$

 $\|\mathbf{v}\| = \sqrt{u^2 + v^2 + w^2}$

1. Vector and Vector Operations

□ Sum of two vectors

$$\mathbf{v}_1 = u_1 \mathbf{i} + v_1 \mathbf{j} + w_1 \mathbf{k} \\ \mathbf{v}_2 = u_2 \mathbf{i} + v_2 \mathbf{j} + w_2 \mathbf{k}$$

$$\Rightarrow \mathbf{v}_1 + \mathbf{v}_2 = (u_1 + u_2) \mathbf{i} + (v_1 + v_2) \mathbf{j} + (w_1 + w_2) \mathbf{k}$$

$$\mathbf{v}_1 = \begin{bmatrix} u_1 \\ v_1 \\ w_1 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} u_2 \\ v_2 \\ w_2 \end{bmatrix} \Rightarrow \mathbf{v}_1 + \mathbf{v}_2 = \begin{bmatrix} u_1 + u_2 \\ v_1 + v_2 \\ w_1 + w_2 \end{bmatrix}$$

□ Multiplication of a vector by a scalar

$$s\mathbf{v} = s(u\mathbf{i} + v\mathbf{j} + w\mathbf{k})$$
$$= su\mathbf{i} + sv\mathbf{j} + sw\mathbf{k} = \begin{bmatrix} su \\ sv \\ sw \end{bmatrix}$$

1. Vector and Vector Operations

- □ The Dot Product of Two Vectors
 - Definition
 The product is scalar
 The basic definitions

 $\mathbf{v}_1 \cdot \mathbf{v}_2 = \|\mathbf{v}_1\| \|\mathbf{v}_2\| \cos(\mathbf{v}_1, \mathbf{v}_2)$

$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{j} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = \mathbf{k} \cdot \mathbf{j} = 0$$

□ Other Definition

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = (u_1 \mathbf{i} + v_1 \mathbf{j} + w_1 \mathbf{k}) \cdot (u_2 \mathbf{i} + v_2 \mathbf{j} + w_2 \mathbf{k})$$
$$= u_1 u_2 + v_1 v_2 + w_1 w_2$$

Vector Magnitude using dot product

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{u^2 + v^2 + w^2}$$

1. Vector and Vector Operations

□ The Unit Direction Vector

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = \|\mathbf{v}_1\| \|\mathbf{v}_2\| \cos(\mathbf{v}_1, \mathbf{v}_2)$$

 A unit vector ev in the direction of v can be derived from the definition of the dot product as

$$\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\| \|\mathbf{v}\| \underbrace{\cos(\mathbf{v}, \mathbf{v})}_{\cos(\mathbf{v}, \mathbf{v})} = \|\mathbf{v}\|^2 \Rightarrow \mathbf{v} \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|} = \|\mathbf{v}\| \\ \mathbf{v} \cdot \mathbf{e}_{\mathbf{v}} = \|\mathbf{v}\| \underbrace{\|\mathbf{e}_{\mathbf{v}}\|}_{=1} \underbrace{\cos(\mathbf{v}, \mathbf{e}_{\mathbf{v}})}_{=1} = \|\mathbf{v}\| \Rightarrow \mathbf{v} \cdot \mathbf{e}_{\mathbf{v}} = \|\mathbf{v}\| \\ \right\} \Rightarrow \mathbf{e}_{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$
(2.11)

1. Vector and Vector Operations

□ The Cross Product of Two Vectors

□ Basic Characteristics:

 $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = 0 \quad \mathbf{i} \times \mathbf{j} = \mathbf{k} = -\mathbf{j} \times \mathbf{i}$ $\mathbf{j} \times \mathbf{k} = \mathbf{i} = -\mathbf{k} \times \mathbf{j} \quad \mathbf{k} \times \mathbf{i} = \mathbf{j} = -\mathbf{i} \times \mathbf{k}$

 $\|\mathbf{v}_3\| = \|\mathbf{v}_1 \times \mathbf{v}_2\| = \|\mathbf{v}_1\| \|\mathbf{v}_2\| |\sin(\mathbf{v}_1, \mathbf{v}_2)|,$

 $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = 0 \quad \mathbf{i} \times \mathbf{j} = \mathbf{k} = -\mathbf{j} \times \mathbf{i}$ $\mathbf{j} \times \mathbf{k} = \mathbf{i} = -\mathbf{k} \times \mathbf{j} \quad \mathbf{k} \times \mathbf{i} = \mathbf{j} = -\mathbf{i} \times \mathbf{k}$

1. Vector and Vector Operations

□ The Cross Product of Two Vectors

 $\mathbf{v}_{1} \times \mathbf{v}_{2} = (u_{1}\mathbf{i} + v_{1}\mathbf{j} + w_{1}\mathbf{k}) \times (u_{2}\mathbf{i} + v_{2}\mathbf{j} + w_{2}\mathbf{k})$ $= u_{1}u_{2}\mathbf{i} \times \mathbf{i} + u_{1}v_{2}\mathbf{i} \times \mathbf{j} + u_{1}w_{2}\mathbf{i} \times \mathbf{k}$ $+ v_{1}u_{2}\mathbf{j} \times \mathbf{i} + v_{1}v_{2}\mathbf{j} \times \mathbf{j} + v_{1}w_{2}\mathbf{j} \times \mathbf{k}$ $+ w_{1}u_{2}\mathbf{k} \times \mathbf{i} + w_{1}v_{2}\mathbf{k} \times \mathbf{j} + w_{1}w_{2}\mathbf{k} \times \mathbf{k}$ $= u_{1}u_{2}\mathbf{0} + u_{1}v_{2}\mathbf{k} + u_{1}w_{2}(-\mathbf{j})$ $+ v_{1}u_{2}(-\mathbf{k}) + v_{1}v_{2}\mathbf{0} + v_{1}w_{2}\mathbf{i}$ $+ w_{1}u_{2}\mathbf{j} + w_{1}v_{2}(-\mathbf{i}) + w_{1}w_{2}\mathbf{0}$ $= (v_{1}w_{2} - v_{2}w_{1})\mathbf{i} - (u_{1}w_{2} - u_{2}w_{1})\mathbf{j} + (u_{1}v_{2} - u_{2}v_{1})\mathbf{k}$

$$v_1 \times \mathbf{v}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \end{vmatrix} = \begin{bmatrix} v_1 w_2 - v_2 w_1 \\ u_2 w_1 - u_1 w_2 \\ u_1 v_2 - u_2 v_1 \end{vmatrix}$$

Or using Determinant

1. Vector and Vector Operations

- □ Scalar Triple Product
- □ Geometric Interpretation

$$(\mathbf{v}_1 \cdot [\mathbf{v}_2 \times \mathbf{v}_3]) = \begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix}$$

1. Vector and Vector Operations

Gradient of a Scalar and Directional Derivatives

"nabla" Operator

□ Gradient of scalar s

 \square Projection of ∇s in a certain direction

 $\frac{ds}{dl} = \nabla s \cdot \mathbf{e}_l = \|\nabla s\| \cos(\nabla s, \mathbf{e}_l)$

 $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$

1. Vector and Vector Operations

Example 01

Let $f(x, y, z) = x^2y + y^2z + z^2x$ (a) find ∇f at point (3, 2, 0). (b) find the derivative at point (3, 2, 0) along the direction (1, 2, 2).

1. Vector and Vector Operations

□ Solution of Example 01

(a)
$$\frac{\partial f}{\partial x} = 2xy + z^2$$
 $\frac{\partial f}{\partial y} = x^2 + 2yz$ $\frac{\partial f}{\partial z} = y^2 + 2xz$
 $\nabla f = (2xy + z^2)\mathbf{i} + (x^2 + 2yz)\mathbf{j} + (y^2 + 2xz)\mathbf{k}$

Thus

$$\nabla f|_{(3,2,0)} = 12\mathbf{i} + 9\mathbf{j} + 4\mathbf{k}$$

1. Vector and Vector Operations

□ Solution of Example 01

(b) The unit vector along direction (1, 2, 2) is

$$\mathbf{e}_{l} = \frac{1\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}}{\sqrt{1^{2} + 2^{2} + 2^{2}}} = \frac{1\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}}{3}$$

The derivative along the direction (1, 2, 2) is

$$\frac{df}{dl}\Big|_{(3,2,0)} = \nabla f|_{(3,2,0)} \cdot \mathbf{e}_l$$

= $(12\mathbf{i} + 9\mathbf{j} + 4\mathbf{k}) \cdot \frac{1\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}}{3}$
= $(12 + 18 + 8)/3 = 38/3$

1. Vector and Vector Operations

Operations on the Nabla Operator

 $\nabla \cdot \mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$

- □ Divergence of a Vector
- □ Laplacian of scalars and vectors
- □ Curl of a vector

 $\nabla \cdot (\nabla s) = \nabla^2 s = \frac{\partial^2 s}{\partial x^2} + \frac{\partial^2 s}{\partial y^2} + \frac{\partial^2 s}{\partial z^2}$

$$\nabla^2 \mathbf{v} = (\nabla^2 u)\mathbf{i} + (\nabla^2 v)\mathbf{j} + (\nabla^2 w)\mathbf{k}$$

$$\nabla \times \mathbf{v} = \begin{pmatrix} \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k} \end{pmatrix} \times (u\mathbf{i} + v\mathbf{j} + w\mathbf{k})$$
$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix} = \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) \mathbf{i} + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) \mathbf{j} + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \mathbf{k}$$

1. Vector and Vector Operations

Example 02

Find the divergence of
$$\mathbf{v} = (u, v, w) = (3x, 2xy, 4z)$$

divergence of v is obtained as

$$\nabla \cdot \mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$
$$= 3 + 2x + 4$$
$$= 7 + 2x$$

 $i \quad j \rightarrow$

2. Matrices and Matrix Operations

Definition.

- Reduction to Vectors and Scalars
- □ Transpose of a Matrix
- □ Addition and Subtraction
- Multiplication by a Scalar
- □ Matrix Multiplication

$$\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix} \Rightarrow s\mathbf{A} = \begin{bmatrix} sa_{ij} \end{bmatrix}$$

$$p_{ij} = \sum_{k=1}^{X} a_{ik} b_{kj}$$

$$\downarrow 1 \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} -1 & 2 & -4 \\ 5 & 4 & 7 \\ 0 & 12 & -2 \\ 3 & 6 & 3 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix} \Rightarrow \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} a_{ji} \end{bmatrix}$$

2 3

1

2. Matrices and Matrix Operations

- □ Square Matrix
 - Main DiagonalSymmetric Matrix
- □ Special Matrices
 - Identity Matrix
 - Upper and Lower Triangular Matrices

$$a_{ij} = -a_{ji}$$

 $\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
 $\mathbf{I} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
 $\mathbf{U} = \begin{cases} u_{ij} & i \leq j \\ 0 & i > j \end{cases}$

2. Matrices and Matrix Operations

Using Matrices to Describe Systems of Equations

 $a_{11}\phi_1 + a_{12}\phi_2 + a_{13}\phi_3 + \ldots + a_{1N}\phi_N = b_1$ $a_{21}\phi_1 + a_{22}\phi_2 + a_{23}\phi_3 + \ldots + a_{2N}\phi_N = b_2$ $a_{31}\phi_1 + a_{32}\phi_2 + a_{33}\phi_3 + \ldots + a_{3N}\phi_N = b_3$

 $A \varphi = b$

 $a_{N1}\phi_1 + a_{N2}\phi_2 + a_{N3}\phi_3 + \ldots + a_{NN}\phi_N = b_N$

.

a_{11}	a_{12}	a_{13}	•••	•••	a_{1N}	$\left[\phi_1\right]$		$\lceil b_1 \rceil$
<i>a</i> ₂₁	a_{22}	a_{23}	•••	•••	a_{2N}	ϕ_2		b_2
a_{31}	<i>a</i> ₃₂	<i>a</i> ₃₃	•••	•••	a_{3N}	ϕ_3		b_3
:	:	:	:	:	:	:	=	:
	•	•	•	·				
		•	·	·	:			
a_{N1}	a_{N2}	a_{N3}	• • •	• • •	a_{NN}	$\lfloor \phi_N \rfloor$		$\lfloor b_N \rfloor$

2. Matrices and Matrix Operations

□ The Determinant of a Square Matrix

Order 2

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \Rightarrow \det(\mathbf{A}) = a_{11}a_{22} - a_{21}a_{12}$$

2. Matrices and Matrix Operations

 $\Box \quad \text{Eigenvectors and Eigenvalues} \quad \mathbf{A}\mathbf{v} = \lambda\mathbf{v} \Rightarrow \mathbf{A}\mathbf{v} = \lambda\mathbf{I}\mathbf{v} \Rightarrow (\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$

 $\mathbf{A} - \lambda \mathbf{I} = \mathbf{0} \Rightarrow \det(\mathbf{A} - \lambda \mathbf{I}) = \mathbf{0}$

	$\int a_{11} - \lambda$	a_{12}	<i>a</i> ₁₃	•••	•••	a_{1N}	
	a_{21}	$a_{22} - \lambda$	<i>a</i> ₂₃	•••	•••	a_{2N}	
	<i>a</i> ₃₁	<i>a</i> ₃₂	$a_{33} - \lambda$	•••	•••	a_{3N}	
det	:	:	:	:	:	:	= 0
	•	•	•	٠	٠	•	
	:	:	:	:			
	•			•	•	•	
	a_{N1}	a_{N2}	a_{N3}	•••	•••	$a_{NN} - \lambda$	

 $\boldsymbol{\tau} = \mathbf{i}\mathbf{i}\tau_{xx} + \mathbf{i}\mathbf{j}\tau_{xy} + \mathbf{i}\mathbf{k}\tau_{xz} + \mathbf{j}\mathbf{i}\tau_{yx} + \mathbf{j}\mathbf{j}\tau_{yy} + \mathbf{j}\mathbf{k}\tau_{yz} + \mathbf{k}\mathbf{i}\tau_{zx} + \mathbf{k}\mathbf{j}\tau_{zy} + \mathbf{k}\mathbf{k}\tau_{zz}$

Dyadic product of a vector by itself

$$\{\mathbf{vv}\} = (u\mathbf{i} + v\mathbf{j} + w\mathbf{k})(u\mathbf{i} + v\mathbf{j} + w\mathbf{k})$$

$$= \mathbf{i}\mathbf{i}uu + \mathbf{i}\mathbf{j}uv + \mathbf{i}\mathbf{k}uw +$$

$$\mathbf{j}\mathbf{i}vu + \mathbf{j}\mathbf{j}vv + \mathbf{j}\mathbf{k}vw +$$

$$\mathbf{k}\mathbf{i}wu + \mathbf{k}\mathbf{j}wv + \mathbf{k}\mathbf{k}ww$$
$$\left\{\mathbf{vv}\} = \begin{bmatrix} uu & uv & uw \\ vu & vv & vw \\ wu & wv & ww \end{bmatrix}$$

2. Tensors

- □ Stress Tensor
 - □ Gradient of a vector

$$\{\nabla \mathbf{v}\} = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right)(u\mathbf{i} + v\mathbf{j} + w\mathbf{k})$$

$$= \mathbf{i}\mathbf{i}\frac{\partial u}{\partial x} + \mathbf{i}\mathbf{j}\frac{\partial v}{\partial x} + \mathbf{i}\mathbf{k}\frac{\partial w}{\partial x} +$$

$$\mathbf{j}\mathbf{i}\frac{\partial u}{\partial y} + \mathbf{j}\mathbf{j}\frac{\partial v}{\partial y} + \mathbf{j}\mathbf{k}\frac{\partial w}{\partial y} +$$

$$\mathbf{k}\mathbf{i}\frac{\partial u}{\partial z} + \mathbf{k}\mathbf{j}\frac{\partial v}{\partial z} + \mathbf{k}\mathbf{k}\frac{\partial w}{\partial z}$$

2. Tensors

□ Stress Tensor

Dot product of a tensor by a vector

$$\begin{bmatrix} \boldsymbol{\tau} \cdot \mathbf{v} \end{bmatrix} = \begin{pmatrix} \mathbf{i} \mathbf{i} \tau_{xx} + \mathbf{i} \mathbf{j} \tau_{xy} + \mathbf{i} \mathbf{k} \tau_{xz} + \mathbf{j} \mathbf{i} \tau_{yx} + \\ \mathbf{j} \mathbf{j} \tau_{yy} + \mathbf{j} \mathbf{k} \tau_{yz} + \mathbf{k} \mathbf{i} \tau_{zx} + \mathbf{k} \mathbf{j} \tau_{zy} + \mathbf{k} \mathbf{k} \tau_{zz} \end{pmatrix} \cdot (u \mathbf{i} + v \mathbf{j} + w \mathbf{k})$$

$$[\boldsymbol{\tau} \cdot \mathbf{v}] = (\tau_{xx} u + \tau_{xy} v + \tau_{xz} w) \mathbf{i} + (\tau_{yx} u + \tau_{yy} v + \tau_{yz} w) \mathbf{j} + (\tau_{zx} u + \tau_{zy} v + \tau_{zz} w) \mathbf{k}$$

$$[\boldsymbol{\tau} \cdot \mathbf{v}] = \begin{bmatrix} \tau_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \tau_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \tau_{zz} \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} \tau_{xx} u + \tau_{xy} v + \tau_{xz} w \\ \tau_{yx} u + \tau_{yy} v + \tau_{yz} w \\ \tau_{zx} u + \tau_{zy} v + \tau_{zz} w \end{bmatrix}$$

2. Tensors

□ Stress Tensor

Divergence of a Tensor

$$\begin{bmatrix} \nabla \cdot \boldsymbol{\tau} \end{bmatrix} = \left(\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} \right) \mathbf{i} + \left(\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} \right) \mathbf{j} \\ + \left(\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \right) \mathbf{k}$$

2. Tensors

□ Stress Tensor

Double Dot product of two tensors

$$(\boldsymbol{\tau}:\nabla\mathbf{v}) = \begin{pmatrix} \mathbf{i}\mathbf{i}\tau_{xx} + \mathbf{i}\mathbf{j}\tau_{xy} + \mathbf{i}\mathbf{k}\tau_{xz} + \\ \mathbf{j}\mathbf{i}\tau_{yx} + \mathbf{j}\mathbf{j}\tau_{yy} + \mathbf{j}\mathbf{k}\tau_{yz} + \\ \mathbf{k}\mathbf{i}\tau_{zx} + \mathbf{k}\mathbf{j}\tau_{zy} + \mathbf{k}\mathbf{k}\tau_{zz} \end{pmatrix} : \begin{pmatrix} \mathbf{i}\mathbf{i}\frac{\partial u}{\partial x} + \mathbf{i}\mathbf{j}\frac{\partial v}{\partial x} + \mathbf{i}\mathbf{k}\frac{\partial w}{\partial x} + \\ \mathbf{j}\mathbf{i}\frac{\partial u}{\partial y} + \mathbf{j}\mathbf{j}\frac{\partial v}{\partial y} + \mathbf{j}\mathbf{k}\frac{\partial w}{\partial y} + \\ \mathbf{k}\mathbf{i}\frac{\partial u}{\partial z} + \mathbf{k}\mathbf{j}\frac{\partial v}{\partial z} + \mathbf{k}\mathbf{k}\frac{\partial w}{\partial z} \end{pmatrix}$$

$$(\boldsymbol{\tau}:\nabla\mathbf{v}) = \tau_{xx}\frac{\partial u}{\partial x} + \tau_{xy}\frac{\partial u}{\partial y} + \tau_{xz}\frac{\partial u}{\partial z} + \tau_{yx}\frac{\partial v}{\partial x} + \tau_{yy}\frac{\partial v}{\partial y} + \tau_{yz}\frac{\partial v}{\partial z} + \tau_{zx}\frac{\partial w}{\partial x} + \tau_{zy}\frac{\partial w}{\partial y} + \tau_{zz}\frac{\partial w}{\partial z}$$

3. Fundamental Theorems of Vector Calculus

□ Gradient Theorem for Line Integrals

It relates a line integral to the values of a function at its endpoints

$$\mathbf{r}(t) = \mathbf{r}[x(t), y(t), z(t)] \text{ for } a \le t \le b.$$

$$\int_{C} \nabla s \cdot d\mathbf{r} = s(r(b)) - s(r(a))$$

3. Fundamental Theorems of Vector Calculus

□ Green's Theorem

It expresses the contour integral of a simple closed curve C in terms of the double integral of the two dimensional region R bounded by C

$$\oint_C (udx + vdy) = \iint_R \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) dxdy$$

$$d\mathbf{r} = dx\mathbf{i} + dy\mathbf{j}$$
 $\mathbf{v} = u\mathbf{i} + v\mathbf{j}$ $d\mathbf{S} = dxdy\mathbf{k}$

$$\oint_C \mathbf{v} \cdot d\mathbf{r} = \iint_R [\nabla \times \mathbf{v}] \cdot d\mathbf{S}$$

3. Fundamental Theorems of Vector Calculus

□ Stoke's Theorem

It is a higher dimensional version of Green's Theorem

$$\int\limits_{S} \left[\nabla \times \mathbf{v} \right] \cdot d\mathbf{S} = \oint\limits_{C} \mathbf{v} \cdot d\mathbf{r}$$

3. Fundamental Theorems of Vector Calculus

Divergence Theorem

It implies that the net flux of a vector field through a closed surface is equal to the total volume of all sources and sinks (i.e., the volume integral of its divergence) over the region inside the surface.

$$\int_{V} (\nabla \cdot \mathbf{v}) dV = \oint_{S} \mathbf{v} \cdot \mathbf{n} \, dS$$

3. Fundamental Theorems of Vector Calculus

Leibniz Integral Theorem

The first term on the right side gives the change in the integral because / is changing with time t, while the second and third terms accounts for the gain and loss in area as the upper and lower bounds are moved, respectively.

Thanks for your time and attention