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1. Properties of Numerical
Solution Methods

[ Consistency
[l Truncation Error

0 Stability
[ For Steady Problems
[ For Temporal Problems
[ For Numerical Methods

[ Convergence
Conservation
[l Boundedness

—
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2. Eulerian and Lagrangian
Description of Conservation Laws

[ Lagrangian. Follows the particles of fluid as they move through space and time
[ Eulerian. Focuses on specific locations in the flow region as time passes

a 4 b) =
(a) /?D (b) 7
S MV(t+A1) - MV(t+AY)
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3. Substantial vs. Local Derivative

0 Rate of change of a variable ¢(z,x(¢))

0 Eulerian (local) Derivative (0¢/0t)

0 Lagrangian (substantial) (D¢ /Dt) D¢ Opdt 0O¢ dx _I_aqb dy +3¢ dz
Dt Otdt Ox_dt Oy dt 0Oz _dt
N N <~

=%+u%—|—v%+w%

Ot Ox dy 0z

ol
= + v-Vo¢
ot RV
Nt convective rate
local rate of change

of change
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3. Substantial vs. Local Derivative

0 Rate of change of a variable ¢(z,x(¢))

0 Eulerian (local) Derivative (0¢/0t)

P(t + Ot, X + OX)

0 Lagrangian (substantial) (D¢ /Dt)

Dv_c'?v_I_
Dt Ot

(v-V)v
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(

dB
dt

4.

)

Reynolds Transport Theorem

Is used to express the conservation laws to an Eulerian Approach (Control Volumes)
Let B be any property of the fluid (mass, momentum, energy, etc.)

Thus, intensive value of B will be b — dB/dm

_4d / bpdV | + / bpv, -n dS : )

dt

The instantaneous change of Bin MV

V() §(1)
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4. Reynolds Transport Theorem

(bp)dV

0 ForafixedCV, V¢ = 0 , thus using Leibniz rule: d 9,
bpdV | = | —
1%

dB 0
(E>MV_ /E(bp)dV—l—/bpv-ndS
v S

Using Divergence Theorem:

(%’f)w: / [g(pb)—l—v-(pvb)]dV (%)Mvz / lg(pb)-l—pbv-v av
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5. Conservation of Mass
Continuity eq.

0 Whatis says

[ Using Lagrangian approach:

ds outward directed

dm surface normal

volume V with

enclosing surface dV

dat ) v

[ Defining :
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5. Conservation of Mass

Continuity eq.
dp
0 Using Reynolds Transport Theorem E + V- [pV] dV =0
4
0 ForanyCV: 8[)

[ Special Cases

10
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6. Conservation of Linear Momentum

0 What it says

[0 Using Lagrangian approach:

( mv))M / £ 4V i

MV

dsS

[ For the moving fluid:

[ rav =/de
%

11
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6. Conservation of Linear Momentum

0 Using the Reynolds Transport Theorem with b = V.

/

%

%[pv]—l—v-{pvv}—f dV =0

0 ForanyCV:

T+ V- {ovy =t

pvv is the dyadic product.
f=f4+1,

12
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6. Conservation of Linear Momentum
Surface Forces

[l The Stress Tensors

M
|

M M M

8§ 8
M M M

8% &

SRR

f =% dS=X -ndS

[0 In Practice:

n
il ”
b3
Tyy
X=—|0 p 0|+ i = —pl+7
T, o
O O p ). yy+p T)Z’ZZ

13
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6. Conservation of Linear Momentum
Surface Forces

[0 Due to the illustration and by applying
the divergence theorem:

/fst=/E-ndS=/V~EdV f,=%-dS=X-ndS
1%

% S

[ Thus:

f,=[V-X]=-Vp+ [V 1

14
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6. Conservation of Linear Momentum
Body Forces — Gravitational

[l Gravitational Force

Z A

fb:pg t,=pg

b

v'\<

15
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6. Conservation of Linear Momentum
Body Forces — System Rotation

k>

0 In arigid rotating body

r
f, = —2plw X v] — pl@ x [@ X 1]]
Coriol?sr forces Centriﬁ;gral forces

16
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6. Conservation of Linear Momentum
General form

0 Without Considering body forces, electric, and
magnetic forces, we’ve come to :

9,
E[pv]—l—V-{pvv} = —-Vp+ V-1 +8

17
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6. Conservation of Linear Momentum
General form — for Newtonian Fluids

[ Stress Tensor for a Newtonian Fluid:

= ,u{Vv + (VV)T} + A(V - v)I

0 Where U isthe molecular viscosity coef.
And 4 is the bulk viscosity coef. And is

usually setto —(2/3)u

. O v Ou ou ow\ ]

3 TS iy TAYN “(ax+ay> “(aﬁm)
B = u<@+@> 2,uav+iv-v ,Lt(aw—i-av)
Ox Oy dy dy 0z

P B  Pliby e N

18
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6. Conservation of Linear Momentum
General form — for Newtonian Fluids

[0 We need the divergence of the stress tensor
V1=V |u(Vv+ (W0)")| + V(7 )

| 2 o 2B . g i 2 | fF, R0 e 91 OB BB |

ax | ox ay "\ox "ay)| T az|"\ oz " ox

|29 (0P T B o OO i gl o 2O O O

N 8x_'u Ox Oy dy “ay i 8z_u dy 0z

0 1 195 5 0N o SOPIL OO 5 O g B, I, SO g
ox |"\az " ax )| Tay|M\oy o) | T8 | oz !

19



Session 03 — Mathematical Description of Physical Phenomena

6. Conservation of Linear Momentum
General form — for Newtonian Fluids

[ Inthe closed form

%[pv] +V-{pw) = —Vp+ V. {,u[VV " (vV)T]} L VOV V) + 1,

gt[pv] +V - A{pvw} =V -{uVv} -Vp+V. {u(Vv)T} + V(AV - v) + 1,

Q

DI+ Y {ow) = V- (i)~ Vp + @

20
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6. Conservation of Linear Momentum
General form — for Newtonian Fluids

0 Forincompressible flows: V- -v= O,

0
E[pv] + V- -{pw}=-Vp+V- {,u[VV + (VV)T] } + £,
[ Divergence of the stress d [2 5“] 0 [<8v 6u)] 0 [((’M W)]
= &= + + 1 4
tensor for the uc?x Ox u(?y Ox Oy #8z 0z Ox
incompressible flows: Pu Pu Pu v u  OPw
KB TR T HE Bt B 8zx]

[ (0%u " 9*u - O*u - O%u . 9%y N O*w
\Ox2  Oy? 07 Ox2  Oyx O

s 2l 82u+82u+82u +8 8u+8v+8w
B X Gy O ox\Ox Oy Oz

21
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6. Conservation of Linear Momentum
General form — for Newtonian Fluids

0 And Finally:

9,
5 [PV + V- {pw} = —Vp + uVPv + 1,

22
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7. Conservation of Energy

0 First law of Thermodynamics s ]
E=m|u-+ EV -V
[ Total Energy E
dE ; :
[ Different Terms of work and heat T =0-W
dt ) vy

dE ; . : ;
(d_) =Qv+0s— W, - Ws
t) mv

23
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7. Conservation of Energy

[l Heat Rates

[0 Work Rates

24
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7. Conservation of Energy

0 Applying RTT B=E=b=—=u+

(5), i+ o

%

—/V-qst+/(—V-hvv]—l—V-[t-v]dV—I—/ dV—I—/c']VdV

vV

25
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7. Conservation of Energy

[ Collecting Terms to one side

/[%(pe)+v-[pve]+v°é1s+V-LDV]—V-[t'V]—fb'V—ijv dv =0

0 ForanyCV:

1,
—(pe) +V [pvel = =V 4y = V- [p¥] + V[V + v+ dy

26
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7. Conservation of Energy — in terms of
specific Internal Energy

0 From the conservation of momentum eq. we have py lpv] +V - {pvv} =f
[ Its dot product in velocity vector would result in 0
W+ o vty
[ After some manipulations:
0 ov
5 PV -V} — ¥+ V- [p(v V)V — pw- [(v- V)¥] =1 v

[0 Rearranging and Collecting Terms ov

g(PV V)+V-[p(v-v)v]—v- p[@t (V-V)v] o

N~

= 4

f

27
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7. Conservation of Energy — in terms of
specific Internal Energy

[ Using the general form of the conservation of linear

momentum, we would get 5 1 ik
E(piv-v) +V. -p(iv-v)v] =—v-Vp4+v:-[V-1[+f-Vv
[ It can be rewritten as g F i v F
gt(pzv-v) TV ¢ _p(zv-v>v}

=—-V-pv|+pV-v+ V. -[t-v]—(7:Vv)+£, v

[0 Thus, using the definition of specific internal energy

J, . ) : :
é—;(pu)—l—v-[pvu]:—V-qs—pV-v—l-(t:VV)-l-qv

28
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7. Conservation of Energy — in terms of

specific Enthalpy
0 Its definition = ]:t — E
P
0 Thus, after some algebraic manipulations:
&, = - . D :
E(ph) + V- [pvh| = -V - ¢4 DIZ F(t: VV) + gy

29
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7. Conservation of Energy — in terms of
specific total Enthalpy

0 Its definition e =10+

0 Thus, after some algebraic manipulations:

o "
E( ho)+v’ [PVho] = —¥ iy

Jap .
ot

V-lt-v]+£f,-v+gy

30
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7. Conservation of Energy — in terms of
Temperature

[ Based on thermodynamic relations dh = e:dT <
— Cp

5 oV

[ The substantial derivative of specific enthalpy is

- .. Dh pr . ov\ | pp
pr 1 a(1/p)\ | DP
= pcy—+p|-—T
pC”Dt+pp ( oT )p Dt
DT |.  [d(Lnp)\ | DP
—al A\ —
et (8(LnT))p Dt

31
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7. Conservation of Energy — in terms of
Temperature

[ Using the eq. for conservation of energy in terms of specific

enthalpy, we would get
DT , O(Ln D :
pep—=—V - g5 — ( ( p)) p-l—(t:VV)-l-qv
p

O(LnT)

32
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7. Conservation of Energy — in terms of

Temperature
0 The Heat Flux term, gs qs = _[kVT]
0 Thus,

& %(pT) + V. [va]] =V . [kVT] — (ggﬁ:?;)plgz + (t:Vv)+gv

33



Session 03 — Mathematical Description of Physical Phenomena

7. Conservation of Energy — in terms of
Temperature

0 The expression for (t: Vv), in Cartesian 3D is given by

)

i a”+@ i a”+8w g [JOR 2
dy Ox 0z Ox dz Oy

(1: vV)—z(‘?” 8"+3_W>2+u 26}6) <8V)

8x dy 0z

. 2
0 We candefine ¥ and P as W 8u+8v+8w
Ox Oy 0z

o 2+ i 2+ AN a1 12 10 2+ il O 2+ LN 2
Ox dy 0z dy Ox 0z Ox Jz Oy

34
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7. Conservation of Energy — in terms of

Temperature

0 Thus, we get: 0 B d(Lnp)\ Dp ,

B [81‘ (pT)+V [va]] =V - [kVT] (B(Ln 7)) Di + A + u® + gy

0
0 For later reference, - (pcpT) IR 2 [pcva] =V - [kVT]

Dc d(Lnp)\ Dp ,
T—=2-— Y + ud
P D (a(Ln T))th A S g
0"

% (peyT) + V- [pc,vT| =V - [kVT] + Q"

35
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7. Conservation of Energy — in terms of
Temperature

%(pcpT) + V- pe,vT| =V - [kVT] + Q'

[ Special Cases,

0 The Dissipation term (D , has negligible values except for
large velocity gradients at supersonic speeds

[ Forincompressible fluids, the continuity eq. implies that y —
thus, (9(Lnp)/0(LnT)) = 0.

| G D
odforthiscase,  — (pepT) +V - [pepvT] = V- [kVT] + gy + pT—L

QT

36
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7. Conservation of Energy — in terms of

Temperature

%(pcpT) + V- pe,vT| =V - [kVT] + Q'

[ Special Cases,

1

For solids, density is constant, the velocity is zero, k would oT
- — = kV?T +¢
be considered constant too, thus PCp Ot = qv

For the ideal gases, (O(Lnp)/0(LnT)) = —1
thus the eq. reduces to

9 D
cy| 5 (pT) +V - [pvT]| = V- [kVT]—I—FI;+/1‘I’—I—u(D+é1v

37
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8. Non-dimensionalization Process ou Ov Ow B

0
Ox Oy 0z
[0 Governing egs. In 3D Cartesian System

Q( u)—I—g( uu)-l—ﬁ( vu)—l—-(z( wu)——@—i— 82u+(92u+(92u
1 P T gy W T g WPV T g WPV = T e T a2 T oy T 92
D b omtlit < it il = 1 oy OV, Gy
o PV T g Y T g WV T e W = Ty T R e T a2 T o) T PR
2 (o) + 2 (o) +-2 (pvw) + 2 (wwy = =2 (20 T, O
gt P T g P T W T G P = T T M a2 T B2 T B2

9, 0 9, 0 ST  PT T
T E(pT) + —(puT) +—(pvT) —I——(pr)} = k(8x2 + 5 + 822)

38
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8. Non-dimensionalization Process

[0 Boussinesq Approximation

g e uv)+3( i L s By OY OO0, PN
gi " T PO g P = —ae T H o e gl | PR
[0 Density using Taylor Expansion d
p = Plrr, +d7p~ (T - Tw)
T=T4
[0 Volume Expansion coeff. p = 1 8_p
p \OT "

0 Thus, the density becomes P =Pl = B(T — To)]

0 0 0 0
0 And Finally g (") + g (ow) + 5 (ow) + 5 (ow)
v Pv v

o
=——(p+pgy)+#(8 2+8y2+82) + pgB(T — Teo)

39
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8. Non-dimensionalization Process

[0 Non-dimensional form of variables

x=

40
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8. Non-dimensionalization Process

[0 Non-dimensionalization of some of the terms in governing eqs.

Ou _ Olpin/(pL)] _pu/(pL) O _ p Oir

Ox O(L%) L 0x pI?0x

Q( g O(ui/L)  p/L Ou  p* Ou

A O(pL%t/n)  pL?/udi  pL3 Ot

0 _ oW/ (pL)ii] 2/ (pL?) D v WD .
G =@ - L &= ma )

5_ptpey 9 _H{+re)/@/(pL)]}
u?/(pl?) = Ox d(x/L)
_pLdp Op p* op
=Rl " On g ;
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8. Non-dimensionalization Process

[0 Non-dimensionalization of some of the terms in governing eqs.

Pu_ Pluif(pL)] _ /(L) Pi_ 12 &
- T R T B oR

p8B(T — Tso) = PEPB(Timax — TOO)T - pgﬂ(AT)T

) Olp(Te + ATT)]  pAT OT

—(pT) = 2% — 72 o3

ot O(pL?*t/ ) Lz Ot

9 ~ O(uit(Too + ATT) /L) uTo Ot pAT O .
A a(L3) T atzall

T kaz(Too +ATT) kAT T

o2 O(L3)? L2 932

42
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ou Ov ow

8. Non-dimensionalization Process et 2 =0
Ox (9y 0z
[0 Non-dimensionalized Governing Egs.
(9& 0 (oir) + 2 (vir) + o (wir) = — op + ‘o + i + S
5 o 0y 0z 0% \ox2 92 072
ov 8(uv)+8(w)+8( )__8[9+ 6‘2\7+82f/+82f/ © GrT
: 5 o 0y oz 9y \oxr 0 o2
gPATL
Gr R . " .
2 ow 0 g () + 0 9 (ow) + Q(Wﬂ/) B 8p 4, O*W i O*W 4 0w
u ot Ox Oy 07 0z ox: 0y 072
5 o
p

or 0 o & @ 7. 1((927" 2T 827">

pr — Hep o Tz 01) + 55 0T) + 5 (#T) = 5o | 52 T 5 + 222

43
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9. Dimensionless Numbers - Re

Re —
[0 Definition 1
i Turbulent fl i
[0 A measure of relative urbulent flow region
importance of advection Transition region

5
(inertia) to diffusion Laminar flow region Re >0X10

n
Q
: Q (o) ”
(viscous) momentum €Eeat 50 Viscous sublayer
fluxes -
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9. Dimensionless Numbers - Gr g 18 ATL3

0 Definition V2

[l Represents the ratio of buoyant to viscous forces
0 It plays the role of Re in Natural Convection

Gr=1.43x10’ Gr=1.43x10" - Gr=143x10’ Gr=1.43x10°
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9. Dimensionless Numbers - Pr

[0 Definition

P
T
o)
,,é')

R |

[0 Represents the ratio of momentum diffusivity to thermal diffusivity
[ Also represents the ratio of hydrodynamic boundary layer to thermal
boundary layer
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9. Dimensionless Numbers - Pr

[ Definition y Velocity
y

Temperature

. Thermal boundary
Hydrodynamic boundary Free Stream Velocity Free Stream layer

pe,  u/p v /T”/

P r — T — m — a u(x,y) e Wall temperature

Pr«l
(b) Temperature Velocity )
A \ Hydrodynamic boundary
y layer

Free Stream Velocity
Free Stream Wall
Temperature temperature

u(x,y) Y e Thermal boundary

T(x,y) | e

Pr>1
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pULc, UL

9. Dimensionless Numbers - Pe

[ Definition
[0 Ratio of the advective transport rate of a physical quantity to

Pe=1000

its diffusive transport rate
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9. Dimensionless Numbers - Sc Sc =

[0 Definition

[ Like Pr but for mass transfer

[0 Represents the ratio of the momentum
diffusivity to mass diffusivity

[0 Also relates the thickness of hydrodynamic
boundary layer to mass transfer boundary
layer
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9. Dimensionless Numbers - Nu

[0 Definition

[0 Not brought up in non-dimensionalization Nu = —
. . : k
of conservation equations but widely used
in information of convective transport
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9. Dimensionless Numbers - Mach

[ Definition A =25

[0 Ratio of speed of an object moving through

a fluid and the local speed of sound B ap
[0 General relation for local speed of sound A= 41}
T

0 For anideal gas, it reduces to a = \/YRT

0 If M<0.2 the flow can be treated as incompressible
0 Suubsonic Sonic Supersonic Hypersonic
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9. Dimensionless Numbers - Ec

0 Definition Ec

[0 Relates the kinetic energy of the flow to its enthalpy
[ It appears as a factor multiplying the viscous dissipation
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9. Dimensionless Numbers - Fr

U
0 Definition Fr = \/TE

[0 A measure of the resistance of
partially immersed objects Hydraulic Jump

moving through fluids
Subcritical flow

Crltll:cal Iflow Fr<|
r:
q
OO o
q
Supercritical flow CCC o
Fr>| ©
A
rapid flow —» ¢
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9. Dimensionless Numbers - We

[0 Definition We =

[0 Represents the ratio of inertia to surface tension forces
0 Itis helpful in analyzing multiphase flow involving interfaces between two different
fluids, with curved surfaces such as droplets and bubbles
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10. Exercises for Introductory Course

0 Problem 01

Let v, v, and v3 be three vectors given by

1 -1 8
V) = Vo = —1 V3 = -5
Bl I =2 |

Find:

a. Vi +vy, Vi+2vy, 3vp, —4v;3

b. |vi], [v2], |v3]

C. Vi V2, V3XVy, V3-(V]XV3)

d. A unit vector in the direction of (v; + v, + v3)
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10. Exercises for Introductory Course

[0 Problem 02

Let 1, j and Kk be unit vectors in the x, y, and z direction, respectively, and let v be
any vector, which in a Cartesian coordinate system is given by

V=ul+vj+wk
Prove that
v=Clix (vxi)+ jx (vxj)+kx(vxKk)

where C 1s a constant to be determined.
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10. Exercises for Introductory Course

[0 Problem 03

Find Vs if s is the scalar function given by

A Syt

b. s=Ln(x+y*+2°)

p— -1( x
c. s = tan-1(3)
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10. Exercises for Introductory Course

[0 Problem 04

Find the Laplacian of the scalar s (V?s) for the cases when s is given by:

a s=x +2eP >

b. s=z+Ln(x+y)
¢. s=sin"(x+y+2)
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10. Exercises for Introductory Course

[0 Problem 05

Use the divergence theorem to evaluate the integral [[ (6xi + 4yj) - dF where the
OF

surface is a sphere defined as OF — x* + y* + z> = 10.
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10. Exercises for Introductory Course

[0 Problem 06

Show that for an incompressible flow of constant viscosity the following holds:

V- {u[VV + (VV)T]} = uV3v
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10. Exercises for Introductory Course

0 Problem 07

A steady incompressible flow field i1s defined by the following velocity vector:

¥ ={x+yi+ +2)) +2x —z2)k

(a) Verify that 1t satisfies the continuity equation.

(b) Assuming constant viscosity u, calculate the viscous stress tensor 7.

(¢) Denoting the fluid density by p and neglecting body forces, develop an
equation for the pressure gradient.
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10. Exercises for Introductory Course

[0 Problem 08

Starting from the incompressible version of the Navier-Stokes equa-

tions derive simplified equations based on the following assumptions:

(a)

(b)

(©)

Viscous effects are much more significant than any effects of fluid accelera-
tion, 1.e.,

%(v) + V- [w] < V- [uVy]

which corresponds to Re = pUL/u < 1 (Stokes Equations).

Inertial effects dominate and viscous effects are considered to be negligible
throughout the flow domain, i.e.,

0
E(V) + V- [vw]> V. [uVy]

which corresponds to Re = pUL/p > 1 (Euler equations).

Derive the Bernoulli equation from momentum conservation with the fol-
lowing hypothesis: one dimensional steady state conditions of a frictionless
fluid u = 0.




Thanks for your
time and attention



