

Computational Fluid Dynamics (CFD)

Introductory Course

Session 03 – Introduction to Numerical Methods

1

Lecturer: *Amirhossein Alivandi March 2023*

Syllabus :

- Session 01 Basic Concepts of CFD
- Session 02 Review of Vector Calculus
- **• Session 03 Mathematical Description of Physical Phenomena**

1. Properties of Numerical Solution Methods

D Consistency D Truncation Error

D Stability

- For Steady Problems
- For Temporal Problems
- For Numerical Methods
- D Convergence
- D Conservation
- D Boundedness

2. Eulerian and Lagrangian Description of Conservation Laws

 \Box Lagrangian. Follows the particles of fluid as they move through space and time Eulerian. Focuses on specific locations in the flow region as time passes

3. Substantial vs. Local Derivative

 \Box Rate of change of a variable $\phi(t, \mathbf{x}(t))$.

 \Box Eulerian (local) Derivative $(\partial \phi / \partial t)$

 Lagrangian (substantial) $(D\phi/Dt)$

 $\boldsymbol{\chi}$

3. Substantial vs. Local Derivative

 \Box Rate of change of a variable $\phi(t, \mathbf{x}(t))$.

 \Box Eulerian (local) Derivative $(\partial \phi / \partial t)$

 \Box Lagrangian (substantial) $(D\phi/Dt)$

$$
\frac{D\mathbf{v}}{Dt} = \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}
$$

4. Reynolds Transport Theorem

- \Box Is used to express the conservation laws to an Eulerian Approach (Control Volumes)
- \Box Let **B** be any property of the fluid (mass, momentum, energy, etc.)
- \Box Thus, intensive value of B will be $\;\;b=dB/dm$
- \Box The instantaneous change of B in MV

$$
\left(\frac{dB}{dt}\right)_{MV} = \frac{d}{dt}\left(\int\limits_{V(t)} b\rho dV\right) + \int\limits_{S(t)} b\rho \mathbf{v}_r \cdot \mathbf{n} \ dS \left(\sum_{y} \int\limits_{WV(0)} W_{\mathbf{v}(y)}\right) \left(\sum_{y} \int\limits_{WV(0)} W_{\mathbf{v}(y)}\right) \left(\sum_{y} \int\limits_{W(0)} W_{\mathbf{v}(y)}\right) \ dV
$$

4. Reynolds Transport Theorem

 \Box For a fixed CV, $\mathbf{v}_s = 0$, thus using Leibniz rule:

$$
\left(\frac{dB}{dt}\right)_{MV} = \int\limits_V \frac{\partial}{\partial t} (b\rho) dV + \int\limits_S b\rho \mathbf{v} \cdot \mathbf{n} \, dS
$$

$$
\frac{d}{dt}\left(\int\limits_V b\rho \ dV\right) = \int\limits_V \frac{\partial}{\partial t} (b\rho) dV
$$

 λ

Using Divergence Theorem:

$$
\left(\frac{dB}{dt}\right)_{MV} = \int\limits_V \left[\frac{\partial}{\partial t}(\rho b) + \nabla \cdot (\rho \mathbf{v} b)\right] dV
$$

$$
\left(\frac{dB}{dt}\right)_{MV} = \int\limits_V \left[\frac{D}{Dt}(\rho b) + \rho b \nabla \cdot \mathbf{v}\right] dV
$$

5. Conservation of Mass Continuity eq.

- What is says
- Using Lagrangian approach:

$$
\left(\frac{dm}{dt}\right)_{MV} = 0
$$

Defining :

$$
B = m
$$

$$
b = 1
$$

5. Conservation of Mass Continuity eq.

Using Reynolds Transport Theorem

D For any CV :

D Special Cases

 $\int\limits_V\bigg(\frac{\partial\rho}{\partial t}+\nabla\cdot[\rho{\bf v}]\bigg)dV=0$

 $\frac{\partial \rho}{\partial t} + \nabla \cdot [\rho \mathbf{v}] = 0$

 $\nabla \cdot \mathbf{v} = 0$

6. Conservation of Linear Momentum

What it says

Using Lagrangian approach:

$$
\left(\frac{d(m\mathbf{v})}{dt}\right)_{MV} = \left(\int\limits_V \mathbf{f} \, dV\right)_{MV}
$$

For the moving fluid:

$$
\left(\int\limits_V \mathbf{f} \,dV\right)_{MV} = \int\limits_V \mathbf{f} \,dV
$$

6. Conservation of Linear Momentum

 \Box Using the Reynolds Transport Theorem with $\bm{b}=\bm{v}_{1}$

$$
\int\limits_{V}\bigg[\frac{\partial}{\partial t}[\rho \mathbf{v}]+\nabla\cdot\{\rho \mathbf{v}\mathbf{v}\}-\mathbf{f}\bigg]dV=0
$$

D For any CV :

$$
\frac{\partial}{\partial t}[\rho \mathbf{v}] + \nabla \cdot {\rho \mathbf{v} \mathbf{v}} = \mathbf{f}
$$

 ρ vv is the dyadic product.

$$
\mathbf{f} = \mathbf{f}_s + \mathbf{f}_b
$$

 \cdot

- **6. Conservation of Linear Momentum Surface Forces**
- D The Stress Tensors

$$
\Sigma = \begin{pmatrix} \Sigma_{xx} & \Sigma_{xy} & \Sigma_{xz} \\ \Sigma_{yx} & \Sigma_{yy} & \Sigma_{yz} \\ \Sigma_{zx} & \Sigma_{zy} & \Sigma_{zz} \end{pmatrix}
$$

In Practice:

$$
\Sigma = -\begin{pmatrix} p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p \end{pmatrix} + \begin{pmatrix} \tau_{xx} & & & & \\ \tau_{xx} & & & \tau_{xy} & \\ \tau_{yx} & & \sum_{yy+p} & \tau_{yz} \\ \tau_{zx} & & \tau_{zy} & \sum_{zz+p} \end{pmatrix} = -p\mathbf{I} + \tau
$$

- **6. Conservation of Linear Momentum Surface Forces**
- \square Due to the illustration and by applying the divergence theorem:

$$
\int\limits_V \mathbf{f}_s \, dV = \int\limits_S \mathbf{\Sigma} \cdot \mathbf{n} \, dS = \int\limits_V \nabla \cdot \mathbf{\Sigma} \, dV
$$

 \Box Thus:

$$
\mathbf{f}_s = [\nabla \cdot \mathbf{\Sigma}] = -\nabla p + [\nabla \cdot \mathbf{\tau}]
$$

- **6. Conservation of Linear Momentum Body Forces – Gravitational**
- Gravitational Force

- **6. Conservation of Linear Momentum Body Forces – System Rotation**
- \Box In a rigid rotating body

$$
\mathbf{f}_b = -2\rho[\boldsymbol{\varpi} \times \mathbf{v}] - \underbrace{\rho[\boldsymbol{\varpi} \times [\boldsymbol{\varpi} \times \mathbf{r}]]}_{\text{Coriolis forces}}
$$

- **6. Conservation of Linear Momentum General form**
- Without Considering body forces, electric, and magnetic forces, we've come to :

$\frac{\partial}{\partial t}[\rho \mathbf{v}] + \nabla \cdot {\rho \mathbf{v}} = -\nabla p + [\nabla \cdot \mathbf{t}] + \mathbf{f}_b$

- **6. Conservation of Linear Momentum General form – for Newtonian Fluids**
- □ Stress Tensor for a Newtonian Fluid:
	- \Box Where μ is the molecular viscosity coef. And λ is the bulk viscosity coef. And is usually set to $-(2/3)\mu$

$$
\boldsymbol{\tau} = \mu \left\{ \nabla \mathbf{v} + (\nabla \mathbf{v})^{\mathrm{T}} \right\} + \lambda (\nabla \cdot \mathbf{v}) \mathbf{I}
$$

$$
\tau = \begin{bmatrix} 2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{v} & \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) & \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \\ \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) & 2\mu \frac{\partial v}{\partial y} + \lambda \nabla \cdot \mathbf{v} & \mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \\ \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) & \mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) & 2\mu \frac{\partial w}{\partial z} + \lambda \nabla \cdot \mathbf{v} \end{bmatrix}
$$

 \Box Thus,

- **6. Conservation of Linear Momentum General form – for Newtonian Fluids**
- We need the divergence of the stress tensor

$$
[\nabla \cdot \mathbf{r}] = \nabla \cdot \left[\mu \left(\nabla \mathbf{v} + (\nabla \mathbf{v})^{\mathrm{T}} \right) \right] + \nabla (\lambda \nabla \cdot \mathbf{v})
$$

$$
= \begin{bmatrix} \frac{\partial}{\partial x} \left[2\mu \frac{\partial u}{\partial x} + \lambda \nabla \cdot \mathbf{v} \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right] \\ \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right] + \frac{\partial}{\partial y} \left[2\mu \frac{\partial v}{\partial y} + \lambda \nabla \cdot \mathbf{v} \right] + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \right] \\ \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \right] + \frac{\partial}{\partial z} \left[2\mu \frac{\partial w}{\partial z} + \lambda \nabla \cdot \mathbf{v} \right] \end{bmatrix}
$$

- **6. Conservation of Linear Momentum General form – for Newtonian Fluids**
- In the closed form

$$
\frac{\partial}{\partial t}[\rho \mathbf{v}] + \nabla \cdot {\rho \mathbf{v} \mathbf{v}} = -\nabla p + \nabla \cdot {\mu [\nabla \mathbf{v} + (\nabla \mathbf{v})^T]} + \nabla (\lambda \nabla \cdot \mathbf{v}) + \mathbf{f}_b
$$

$$
\frac{\partial}{\partial t}[\rho \mathbf{v}] + \nabla \cdot {\rho \mathbf{v} \mathbf{v}} = \nabla \cdot {\mu \nabla \mathbf{v}} - {\nabla p} + {\nabla \cdot {\mu (\nabla \mathbf{v})^{\mathrm{T}}} + {\nabla (\lambda \nabla \cdot \mathbf{v})} + \mathbf{f}_b
$$

$$
\frac{\partial}{\partial t}[\rho \mathbf{v}] + \nabla \cdot {\rho \mathbf{v}} = \nabla \cdot {\mu \nabla \mathbf{v}} - \nabla p + \mathbf{Q}^{\mathbf{v}}
$$

- **6. Conservation of Linear Momentum General form – for Newtonian Fluids**
- \Box For incompressible flows: $\nabla \cdot \mathbf{v} = 0$

$$
\frac{\partial}{\partial t}[\rho \mathbf{v}] + \nabla \cdot {\rho \mathbf{v} \mathbf{v}} = -\nabla p + \nabla \cdot {\mu {\left[{\nabla \mathbf{v} + (\nabla \mathbf{v})^{\mathrm{T}}} \right]}} + \mathbf{f}_b
$$

D Divergence of the stress tensor for the incompressible flows:

$$
\mu \frac{\partial}{\partial x} \left[2 \frac{\partial u}{\partial x} \right] + \mu \frac{\partial}{\partial y} \left[\left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right] + \mu \frac{\partial}{\partial z} \left[\left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \right]
$$

\n
$$
= \mu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 w}{\partial z^2} \right]
$$

\n
$$
= \mu \left[\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right]
$$

\n
$$
= \mu \left[\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right]
$$

- **6. Conservation of Linear Momentum General form – for Newtonian Fluids**
- And Finally:

 $\frac{\partial}{\partial t}[\rho \mathbf{v}] + \nabla \cdot {\rho \mathbf{v} \mathbf{v}} = -\nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{f}_b$

- First law of Thermodynamics
	- Total Energy *E*
- D Different Terms of work and heat

$$
E = m\left(\hat{u} + \frac{1}{2}\mathbf{v} \cdot \mathbf{v}\right)
$$

$$
\left(\frac{dE}{dt}\right)_{MV} = \dot{Q} - \dot{W}
$$

$$
\left(\frac{dE}{dt}\right)_{MV} = \dot{Q}_V + \dot{Q}_S - \dot{W}_b - \dot{W}_S
$$

$$
\dot{Q}_V = \int\limits_V \dot{q}_V dV \quad \dot{Q}_S = -\int\limits_S \dot{q}_s \cdot \mathbf{n} \, dS = -\int\limits_V \nabla \cdot \dot{q}_s dV
$$

D Heat Rates

Work Rates

$$
\dot{W}_b = -\int\limits_V (\mathbf{f}_b \cdot \mathbf{v}) dV \qquad \dot{W}_S = -\int\limits_S (\mathbf{f}_S \cdot \mathbf{v}) dS
$$

$$
\dot{W}_S = -\int\limits_S \left[\Sigma \cdot \mathbf{v}\right] \cdot \mathbf{n} \, dS = -\int\limits_V \nabla \cdot \left[\Sigma \cdot \mathbf{v}\right] dV = -\int\limits_V \nabla \cdot \left[(-p\mathbf{I} + \tau) \cdot \mathbf{v}\right] dV
$$

$$
\dot{W}_S = -\int\limits_V {(-\nabla \cdot [p\textbf{v}]+\nabla \cdot [\textbf{t}\cdot \textbf{v}])dV}
$$

Applying RTT

$$
B = E \Rightarrow b = \frac{dE}{dm} = \hat{u} + \frac{1}{2}\mathbf{v} \cdot \mathbf{v} = e
$$

$$
\frac{dE}{dt}\bigg|_{MV} = \int\limits_V \left[\frac{\partial}{\partial t}(\rho e) + \nabla \cdot [\rho \mathbf{v} e]\right] dV
$$
\n
$$
= -\int\limits_V \nabla \cdot \dot{q}_s dV + \int\limits_V (-\nabla \cdot [p\mathbf{v}] + \nabla \cdot [\mathbf{\tau} \cdot \mathbf{v}]) dV + \int\limits_V (\mathbf{f}_b \cdot \mathbf{v}) dV + \int\limits_V \dot{q}_V dV
$$

D Collecting Terms to one side

$$
\int\limits_V\bigg[\frac{\partial}{\partial t}(\rho e)+\nabla\cdot[\rho\mathbf{v} e]+\nabla\cdot\dot{q}_s+\nabla\cdot[p\mathbf{v}]-\nabla\cdot[\mathbf{\tau}\cdot\mathbf{v}]-\mathbf{f}_b\cdot\mathbf{v}-\dot{q}_V\bigg]dV=0
$$

D For any CV :

$$
\frac{\partial}{\partial t}(\rho e) + \nabla \cdot [\rho \mathbf{v} e] = -\nabla \cdot \dot{q}_s - \nabla \cdot [p \mathbf{v}] + \nabla \cdot [\mathbf{\tau} \cdot \mathbf{v}] + \mathbf{f}_b \cdot \mathbf{v} + \dot{q}_V
$$

7. Conservation of Energy – in terms of specific Internal Energy

 \Box From the conservation of momentum eq. we have

 $\frac{\partial}{\partial t}[\rho \mathbf{v}] + \nabla \cdot {\rho \mathbf{v} \mathbf{v}} = \mathbf{f}$

- \Box Its dot product in velocity vector would result in
- After some manipulations:

$$
\left[\frac{\partial}{\partial t}(\rho \mathbf{v}) + \nabla \cdot \{\rho \mathbf{v} \mathbf{v}\}\right] \cdot \mathbf{v} = \mathbf{f} \cdot \mathbf{v}
$$

$$
\frac{\partial}{\partial t}(\rho \mathbf{v} \cdot \mathbf{v}) - \rho \mathbf{v} \cdot \frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot [\rho(\mathbf{v} \cdot \mathbf{v})\mathbf{v}] - \rho \mathbf{v} \cdot [(\mathbf{v} \cdot \nabla)\mathbf{v}] = \mathbf{f} \cdot \mathbf{v}
$$

□ Rearranging and Collecting Terms

$$
\frac{\partial}{\partial t}(\rho \mathbf{v} \cdot \mathbf{v}) + \nabla \cdot [\rho(\mathbf{v} \cdot \mathbf{v})\mathbf{v}] - \mathbf{v} \cdot \rho \left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}\right] = \mathbf{f} \cdot \mathbf{v}
$$

$$
= \mathbf{f}
$$

7. Conservation of Energy – in terms of specific Internal Energy

- \Box Using the general form of the conservation of linear momentum, we would get
- \Box It can be rewritten as

$$
\frac{\partial}{\partial t} \left(\rho \frac{1}{2} \mathbf{v} \cdot \mathbf{v} \right) + \nabla \cdot \left[\rho \left(\frac{1}{2} \mathbf{v} \cdot \mathbf{v} \right) \mathbf{v} \right] = -\mathbf{v} \cdot \nabla p + \mathbf{v} \cdot \left[\nabla \cdot \mathbf{r} \right] + \mathbf{f}_b \cdot \mathbf{v}
$$

$$
\frac{\partial}{\partial t} \left(\rho \frac{1}{2} \mathbf{v} \cdot \mathbf{v} \right) + \nabla \cdot \left[\rho \left(\frac{1}{2} \mathbf{v} \cdot \mathbf{v} \right) \mathbf{v} \right] \n= -\nabla \cdot \left[p\mathbf{v} \right] + p \nabla \cdot \mathbf{v} + \nabla \cdot \left[\mathbf{\tau} \cdot \mathbf{v} \right] - \left(\mathbf{\tau} : \nabla \mathbf{v} \right) + \mathbf{f}_b \cdot \mathbf{v}
$$

 \Box Thus, using the definition of specific internal energy

$$
\frac{\partial}{\partial t}(\rho \hat{u}) + \nabla \cdot [\rho \mathbf{v} \hat{u}] = -\nabla \cdot \dot{q}_s - p \nabla \cdot \mathbf{v} + (\tau : \nabla \mathbf{v}) + \dot{q}_V
$$

- **7. Conservation of Energy in terms of specific Enthalpy**
- \Box Its definition

 $\hat{u} = \hat{h} - \frac{p}{\rho}$

 \square Thus, after some algebraic manipulations:

$$
\frac{\partial}{\partial t}(\rho \hat{h}) + \nabla \cdot [\rho \mathbf{v} \hat{h}] = -\nabla \cdot \dot{q}_s + \frac{Dp}{Dt} + (\tau : \nabla \mathbf{v}) + \dot{q}_V
$$

7. Conservation of Energy – in terms of specific total Enthalpy

 \Box Its definition

$$
e = \hat{u} + \frac{1}{2}\mathbf{v} \cdot \mathbf{v} = \hat{h} - \frac{p}{\rho} + \frac{1}{2}\mathbf{v} \cdot \mathbf{v} = \hat{h}_0 - \frac{p}{\rho}
$$

 \Box Thus, after some algebraic manipulations:

$$
\frac{\partial}{\partial t}(\rho \hat{h}_0) + \nabla \cdot [\rho \mathbf{v} \hat{h}_0] = -\nabla \cdot \dot{q}_s + \frac{\partial p}{\partial t} + \nabla \cdot [\mathbf{\tau} \cdot \mathbf{v}] + \mathbf{f}_b \cdot \mathbf{v} + \dot{q}_V
$$

- **7. Conservation of Energy in terms of Temperature**
- D Based on thermodynamic relations

$$
d\hat{h} = c_p dT + \left[\hat{V} - T\left(\frac{\partial \hat{V}}{\partial T}\right)_p\right] dp
$$

 \square The substantial derivative of specific enthalpy is

$$
\frac{\partial}{\partial t}(\rho \hat{h}) + \nabla \cdot [\rho \mathbf{v} \hat{h}] = \rho \frac{D\hat{h}}{Dt} = \rho c_p \frac{DT}{Dt} + \rho \left[\hat{V} - T \left(\frac{\partial \hat{V}}{\partial T}\right)_p\right] \frac{DP}{Dt}
$$

$$
= \rho c_p \frac{DT}{Dt} + \rho \left[\frac{1}{\rho} - T \left(\frac{\partial (1/\rho)}{\partial T}\right)_p\right] \frac{DP}{Dt}
$$

$$
= \rho c_p \frac{DT}{Dt} + \left[1 + \left(\frac{\partial (Ln\rho)}{\partial (LnT)}\right)_p\right] \frac{DP}{Dt}
$$

- **7. Conservation of Energy in terms of Temperature**
- \Box Using the eq. for conservation of energy in terms of specific enthalpy, we would get

$$
\rho c_p \frac{DT}{Dt} = -\nabla \cdot \dot{q}_s - \left(\frac{\partial (Ln\rho)}{\partial (LnT)}\right)_p \frac{Dp}{Dt} + (\tau : \nabla \mathbf{v}) + \dot{q}_V
$$

 \Box By expanding the substantial derivative

$$
c_p \left[\frac{\partial}{\partial t} (\rho T) + \nabla \cdot [\rho \mathbf{v} T] \right] = - \nabla \cdot \dot{q}_s - \left(\frac{\partial (L n \rho)}{\partial (L n T)} \right)_p \frac{D p}{D t} + (\tau : \nabla \mathbf{v}) + \dot{q}_V
$$

- **7. Conservation of Energy in terms of Temperature**
- \Box The Heat Flux term, \dot{q}_s

 \Box Thus,

$$
\dot{q}_s=-[k\nabla T]
$$

$$
c_p \left[\frac{\partial}{\partial t} (\rho T) + \nabla \cdot [\rho \mathbf{v} T] \right] = \nabla \cdot [k \nabla T] - \left(\frac{\partial (L n \rho)}{\partial (L n T)} \right)_p \frac{D p}{D t} + (\tau : \nabla \mathbf{v}) + \dot{q}_V
$$

 \Box The expression for $(\tau : \nabla v)$, in Cartesian 3D is given by

$$
(\tau : \nabla \mathbf{v}) = \lambda \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right)^2 + \mu \left(\frac{2 \left(\frac{\partial u}{\partial x} \right)^2 + 2 \left(\frac{\partial v}{\partial y} \right)^2 + 2 \left(\frac{\partial w}{\partial z} \right)^2}{+ \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)^2} \right)
$$

 \Box We can define Ψ and Φ as

$$
\Psi = \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right)^2
$$

$$
\Phi = 2\left[\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial w}{\partial z}\right)^2 \right] + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right)^2
$$

 \Box Thus, we get:

D For later reference,

$$
c_p \left[\frac{\partial}{\partial t} (\rho T) + \nabla \cdot [\rho \mathbf{v} T] \right] = \nabla \cdot [k \nabla T] - \left(\frac{\partial (Ln \rho)}{\partial (Ln T)} \right)_p \frac{Dp}{Dt} + \lambda \Psi + \mu \Phi + \dot{q}_V
$$

$$
\frac{\partial}{\partial t} (\rho c_p T) + \nabla \cdot [\rho c_p \mathbf{v} T] = \nabla \cdot [k \nabla T]
$$

$$
+ \rho T \frac{Dc_p}{Dt} - \left(\frac{\partial (Ln \rho)}{\partial (Ln T)} \right)_p \frac{Dp}{Dt} + \lambda \Psi + \mu \Phi + \dot{q}_V
$$

$$
\frac{\partial}{\partial t} \left(\rho c_p T \right) + \nabla \cdot \left[\rho c_p \mathbf{v} T \right] = \nabla \cdot \left[k \nabla T \right] + Q^T
$$

$$
\frac{\partial}{\partial t}(\rho c_p T) + \nabla \cdot [\rho c_p \mathbf{v} T] = \nabla \cdot [k \nabla T] + Q^T
$$

D Special Cases,

 \Box The Dissipation term Φ , has negligible values except for large velocity gradients at supersonic speeds

 \Box For incompressible fluids, the continuity eq. implies that $\Psi = 0$ thus, $(\partial(Ln\rho)/\partial(LnT)) = 0$.

and for this case,

$$
\frac{\partial}{\partial t} \left(\rho c_p T \right) + \nabla \cdot \left[\rho c_p \mathbf{v} T \right] = \nabla \cdot \left[k \nabla T \right] + \dot{q}_V + \rho T \frac{D c_p}{Dt}
$$

 Q^T

$$
\frac{\partial}{\partial t}(\rho c_p T) + \nabla \cdot [\rho c_p \mathbf{v} T] = \nabla \cdot [k \nabla T] + \mathcal{Q}^T
$$

D Special Cases,

 \Box For solids, density is constant, the velocity is zero, k would be considered constant too, thus

$$
\rho c_p \frac{\partial T}{\partial t} = k \nabla^2 T + \dot{q}_V
$$

 \Box For the ideal gases, $\left(\frac{\partial (Ln\rho)}{\partial (LnT)}\right) = -1$ thus the eq. reduces to

$$
c_p \left[\frac{\partial}{\partial t} (\rho T) + \nabla \cdot [\rho \mathbf{v} T] \right] = \nabla \cdot [k \nabla T] + \frac{Dp}{Dt} + \lambda \Psi + \mu \Phi + \dot{q}_V
$$

 $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$

Governing eqs. In 3D Cartesian System

$$
\frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial x}(\rho uu) + \frac{\partial}{\partial y}(\rho vu) + \frac{\partial}{\partial z}(\rho wu) = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)
$$
\n
$$
\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(\rho uv) + \frac{\partial}{\partial y}(\rho vv) + \frac{\partial}{\partial z}(\rho wv) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right) - \rho g
$$
\n
$$
\frac{\partial}{\partial t}(\rho w) + \frac{\partial}{\partial x}(\rho uw) + \frac{\partial}{\partial y}(\rho vw) + \frac{\partial}{\partial z}(\rho ww) = -\frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right)
$$
\n
$$
c_p \left[\frac{\partial}{\partial t}(\rho T) + \frac{\partial}{\partial x}(\rho u T) + \frac{\partial}{\partial y}(\rho v T) + \frac{\partial}{\partial z}(\rho w T)\right] = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right)
$$

D Boussinesq Approximation

$$
\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(\rho u v) + \frac{\partial}{\partial y}(\rho v v) + \frac{\partial}{\partial z}(\rho w v) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right) - \rho g
$$

D Density using Taylor Expansion

 $\rho = \rho|_{T=T_{\infty}} + \frac{d\rho}{dT}\bigg|_{T=T_{\infty}} (T - T_{\infty})$

Volume Expansion coeff.

$$
\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_p
$$

- \Box Thus, the density becomes
- And Finally

$$
\rho = \rho_{\infty} [1 - \beta (T - T_{\infty})]
$$

$$
\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(\rho u v) + \frac{\partial}{\partial y}(\rho v v) + \frac{\partial}{\partial z}(\rho w v) \n= -\frac{\partial}{\partial y}(p + \rho g y) + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right) + \rho g \beta (T - T_{\infty})
$$

 \Box Non-dimensional form of variables

$$
\hat{x} = \frac{x}{L}, \hat{y} = \frac{y}{L}, \hat{z} = \frac{z}{L}
$$
\n
$$
\hat{u} = \frac{u}{\mu/(\rho L)}, \hat{v} = \frac{v}{\mu/(\rho L)}, \hat{w} = \frac{w}{\mu/(\rho L)}
$$
\n
$$
\hat{t} = \frac{t}{\rho L^2 / \mu}
$$
\n
$$
\hat{p} = \frac{p + \rho gy}{\mu^2 / (\rho L^2)}
$$
\n
$$
\hat{T} = \frac{T - T_{\infty}}{T_{\text{max}} - T_{\infty}}
$$

 \Box Non-dimensionalization of some of the terms in governing eqs.

$$
\frac{\partial u}{\partial x} = \frac{\partial [\mu \hat{u}/(\rho L)]}{\partial (L\hat{x})} = \frac{\mu/(\rho L)}{L} \frac{\partial \hat{u}}{\partial \hat{x}} = \frac{\mu}{\rho L^2} \frac{\partial \hat{u}}{\partial \hat{x}}
$$

$$
\frac{\partial}{\partial t} (\rho u) = \frac{\partial (\mu \hat{u}/L)}{\partial (\rho L^2 \hat{t}/\mu)} = \frac{\mu/L}{\rho L^2/\mu} \frac{\partial \hat{u}}{\partial \hat{t}} = \frac{\mu^2}{\rho L^3} \frac{\partial \hat{u}}{\partial \hat{t}}
$$

$$
\frac{\partial}{\partial t} (\rho u u) = \frac{\partial [\mu^2/(\rho L^2) \hat{u} \hat{u}]}{\partial (L\hat{x})} = \frac{\mu^2/(\rho L^2)}{L} \frac{\partial}{\partial \hat{x}} (\hat{u} \hat{u}) = \frac{\mu^2}{\rho L^3} \frac{\partial}{\partial \hat{x}} (\hat{u} \hat{u})
$$

$$
\hat{p} = \frac{p + \rho gy}{\mu^2/(\rho L^2)} \Rightarrow \frac{\partial \hat{p}}{\partial \hat{x}} = \frac{\partial \{(p + \rho gy)/[\mu^2/(\rho L^2)]\}}{\partial (x/L)}
$$

$$
= \frac{\rho L^3}{\mu^2} \frac{\partial p}{\partial x} \Rightarrow \frac{\partial p}{\partial x} = \frac{\mu^2}{\rho L^3} \frac{\partial \hat{p}}{\partial \hat{x}}
$$

41

 \Box Non-dimensionalization of some of the terms in governing eqs.

$$
\mu \frac{\partial^2 u}{\partial x^2} = \mu \frac{\partial^2 [\mu \hat{u}/(\rho L)]}{\partial (L\hat{x})^2} = \mu \frac{\mu/(\rho L)}{L^2} \frac{\partial^2 \hat{u}}{\partial \hat{x}^2} = \frac{\mu^2}{\rho L^3} \frac{\partial^2 \hat{u}}{\partial \hat{x}^2}
$$

\n
$$
\rho g \beta (T - T_{\infty}) = \rho g \beta (T_{\text{max}} - T_{\infty}) \hat{T} = \rho g \beta (\Delta T) \hat{T}
$$

\n
$$
\frac{\partial}{\partial t} (\rho T) = \frac{\partial [\rho (T_{\infty} + \Delta T \hat{T})]}{\partial (\rho L^2 \hat{t}/\mu)} = \frac{\mu \Delta T}{L^2} \frac{\partial \hat{T}}{\partial \hat{t}}
$$

\n
$$
\frac{\partial}{\partial x} (\rho u T) = \frac{\partial (\mu \hat{u} (T_{\infty} + \Delta T \hat{T})/L)}{\partial (L\hat{x})} = \frac{\mu T_{\infty}}{L^2} \frac{\partial \hat{u}}{\partial \hat{x}} + \frac{\mu \Delta T}{L^2} \frac{\partial}{\partial \hat{x}} (\hat{u} \hat{T})
$$

\n
$$
k \frac{\partial^2 T}{\partial x^2} = k \frac{\partial^2 (T_{\infty} + \Delta T \hat{T})}{\partial (L\hat{x})^2} = \frac{k \Delta T}{L^2} \frac{\partial^2 \hat{T}}{\partial \hat{x}^2}
$$

 $\frac{\partial \hat{u}}{\partial \hat{x}} + \frac{\partial \hat{v}}{\partial \hat{y}} + \frac{\partial \hat{w}}{\partial \hat{z}} = 0$

Non-dimensionalized Governing Eqs.

$$
Gr = \frac{g\beta\Delta TL^3}{v^2}
$$

$$
v = \frac{\mu}{\rho}
$$

$$
Pr = \frac{\mu c_p}{k}
$$

$$
\frac{\partial \hat{u}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{u}\hat{u}) + \frac{\partial}{\partial \hat{y}} (\hat{v}\hat{u}) + \frac{\partial}{\partial \hat{z}} (\hat{w}\hat{u}) = -\frac{\partial \hat{p}}{\partial \hat{x}} + \left(\frac{\partial^2 \hat{u}}{\partial \hat{x}^2} + \frac{\partial^2 \hat{u}}{\partial \hat{y}^2} + \frac{\partial^2 \hat{u}}{\partial \hat{z}^2}\right)
$$
\n
$$
\frac{\partial \hat{v}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{u}\hat{v}) + \frac{\partial}{\partial \hat{y}} (\hat{v}\hat{v}) + \frac{\partial}{\partial \hat{z}} (\hat{w}\hat{v}) = -\frac{\partial \hat{p}}{\partial \hat{y}} + \left(\frac{\partial^2 \hat{v}}{\partial \hat{x}^2} + \frac{\partial^2 \hat{v}}{\partial \hat{y}^2} + \frac{\partial^2 \hat{v}}{\partial \hat{z}^2}\right) + \mathbf{G}\mathbf{r}\hat{T}
$$
\n
$$
\frac{\partial \hat{w}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{u}\hat{w}) + \frac{\partial}{\partial \hat{y}} (\hat{v}\hat{w}) + \frac{\partial}{\partial \hat{z}} (\hat{w}\hat{w}) = -\frac{\partial \hat{p}}{\partial \hat{z}} + \left(\frac{\partial^2 \hat{w}}{\partial \hat{x}^2} + \frac{\partial^2 \hat{w}}{\partial \hat{y}^2} + \frac{\partial^2 \hat{w}}{\partial \hat{z}^2}\right)
$$
\n
$$
\frac{\partial \hat{T}}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} (\hat{u}\hat{T}) + \frac{\partial}{\partial \hat{y}} (\hat{v}\hat{T}) + \frac{\partial}{\partial \hat{z}} (\hat{w}\hat{T}) = \frac{1}{\mathbf{P}r} \left(\frac{\partial^2 \hat{T}}{\partial \hat{x}^2} + \frac{\partial^2 \hat{T}}{\partial \hat{y}^2} + \frac{\partial^2 \hat{T}}{\partial \hat{z}^2}\right)
$$

9. Dimensionless Numbers - Re

D Definition

 $Re = \frac{\rho UL}{\mu}$

Turbulent flow region \Box A measure of relative **Transition region** importance of advection $Re > 5x10^5$ Laminar flow region (inertia) to diffusion CECCCOND CCCON Viscous sublayer (viscous) momentum fluxes $Re < 5x10^5$ Flow- $Re = 10$ $Re = 100$ $Re = 1000$ $Re = 4000$

9. Dimensionless Numbers - Gr

D Definition

 $Gr = \frac{g\beta\Delta TL^3}{v^2}$

- \Box Represents the ratio of buoyant to viscous forces
- It plays the role of Re in Natural Convection

9. Dimensionless Numbers - Pr

D Definition

 $Pr = \frac{\mu c_p}{k} = \frac{\mu/\rho}{k/\rho c_p} = \frac{v}{\alpha}$

- \Box Represents the ratio of momentum diffusivity to thermal diffusivity
- \Box Also represents the ratio of hydrodynamic boundary layer to thermal boundary layer

9. Dimensionless Numbers - Pr

Definition

$$
Pr = \frac{\mu c_p}{k} = \frac{\mu / \rho}{k / \rho c_p} = \frac{v}{\alpha}
$$

9. Dimensionless Numbers - Pe

D Definition

 $Pe = \frac{\rho U L c_p}{k} = \frac{U L}{\alpha} = Re^* Pr$

 \Box Ratio of the advective transport rate of a physical quantity to its diffusive transport rate

 $Pe = \frac{UL}{D} = Re^*Sc$

9. Dimensionless Numbers - Sc

- D Definition
- \Box Like Pr but for mass transfer
- \Box Represents the ratio of the momentum diffusivity to mass diffusivity
- Also relates the thickness of hydrodynamic boundary layer to mass transfer boundary layer

 $Sc = \frac{v}{D}$

9. Dimensionless Numbers - Nu

- Definition
- Not brought up in non-dimensionalization of conservation equations but widely used in information of convective transport

 $Nu = \frac{hL}{k}$

9. Dimensionless Numbers - Mach

D Definition

 $M = \frac{|\mathbf{v}|}{|\mathbf{v}|}$

 \Box Ratio of speed of an object moving through a fluid and the local speed of sound General relation for local speed of sound

$$
a = \sqrt{\gamma \left(\frac{\partial p}{\partial \rho}\right)_T}
$$

- \Box For an ideal gas, it reduces to
- If M<0.2 the flow can be treated as incompressible Suubsonic Sonic Supersonic Hypersonic

 RT $a = \sqrt{a^2 + 4a^2}$

9. Dimensionless Numbers - Ec

Definition

 $Ec = \frac{\mathbf{v} \cdot \mathbf{v}}{c_p \Delta T}$

- \Box Relates the kinetic energy of the flow to its enthalpy
- I It appears as a factor multiplying the viscous dissipation

9. Dimensionless Numbers - Fr

D Definition

 $Fr = \frac{U}{\sqrt{gL}}$

 \Box A measure of the resistance of partially immersed objects moving through fluids

9. Dimensionless Numbers - We

D Definition

 $We = \frac{\rho U^2 L}{\sigma}$

- \Box Represents the ratio of inertia to surface tension forces
- I It is helpful in analyzing multiphase flow involving interfaces between two different fluids, with curved surfaces such as droplets and bubbles

D Problem 01

Let $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 be three vectors given by

$$
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -5 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ -1 \\ 10 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 8 \\ -5 \\ -2 \end{bmatrix}
$$

Find:

a. $\mathbf{v}_1 + \mathbf{v}_2$, $\mathbf{v}_1 + 2\mathbf{v}_2$, $3\mathbf{v}_2 - 4\mathbf{v}_3$ **b.** $|{\bf v}_1|, |{\bf v}_2|, |{\bf v}_3|$ c. $\mathbf{v}_1 \cdot \mathbf{v}_2$, $\mathbf{v}_3 \times \mathbf{v}_2$, $\mathbf{v}_2 \cdot (\mathbf{v}_1 \times \mathbf{v}_3)$ d. A unit vector in the direction of $(v_1 + v_2 + v_3)$

D Problem 02

Let **i**, **j** and **k** be unit vectors in the x, y, and z direction, respectively, and let v be any vector, which in a Cartesian coordinate system is given by

 $\mathbf{v} = u\mathbf{i} + v\mathbf{j} + w\mathbf{k}$

Prove that

$$
\mathbf{v} = C[\mathbf{i} \times (\mathbf{v} \times \mathbf{i}) + \mathbf{j} \times (\mathbf{v} \times \mathbf{j}) + \mathbf{k} \times (\mathbf{v} \times \mathbf{k})]
$$

where C is a constant to be determined.

D Problem 03

Find ∇s if s is the scalar function given by

a.
$$
s = y^2 e^{2x-3z}
$$

\nb. $s = \text{Ln}(x + y^2 + z^3)$
\nc. $s = \tan^{-1} \left(\frac{x}{yz}\right)$

D Problem 04

Find the Laplacian of the scalar $s(\nabla^2 s)$ for the cases when s is given by:

a.
$$
s = x^3 + z^2 e^{2y-3x}
$$

\nb. $s = z + \text{Ln}(x + y)$
\nc. $s = \sin^{-1}(x + y + z)$

D Problem 05

Use the divergence theorem to evaluate the integral $\iint (6x\mathbf{i} + 4y\mathbf{j}) \cdot d\mathbf{F}$ where the ∂F surface is a sphere defined as $\partial F \rightarrow x^2 + y^2 + z^2 = 10$.

D Problem 06

Show that for an incompressible flow of constant viscosity the following holds:

$$
\nabla \cdot \left\{ \mu \left[\nabla \mathbf{v} + (\nabla \mathbf{v})^{\mathrm{T}} \right] \right\} = \mu \nabla^2 \mathbf{v}
$$

D Problem 07

A steady incompressible flow field is defined by the following velocity vector:

$$
\mathbf{v} = (x+y)\mathbf{i} + (y+z)\mathbf{j} + 2(x-z)\mathbf{k}
$$

- Verify that it satisfies the continuity equation. $\left(a\right)$
- Assuming constant viscosity μ , calculate the viscous stress tensor τ . (b)
- Denoting the fluid density by ρ and neglecting body forces, develop an (c) equation for the pressure gradient.

D Problem 08

Starting from the incompressible version of the Navier-Stokes equations derive simplified equations based on the following assumptions:

(a) Viscous effects are much more significant than any effects of fluid acceleration, i.e.,

$$
\frac{\partial}{\partial t}(\mathbf{v}) + \nabla \cdot [\mathbf{v} \mathbf{v}] \ll \nabla \cdot [\mu \nabla \mathbf{v}]
$$

which corresponds to $Re = \rho U L / \mu \ll 1$ (Stokes Equations).

(b) Inertial effects dominate and viscous effects are considered to be negligible throughout the flow domain, i.e.,

$$
\frac{\partial}{\partial t}(\mathbf{v}) + \nabla \cdot [\mathbf{v} \mathbf{v}] \gg \nabla \cdot [\mu \nabla \mathbf{v}]
$$

which corresponds to $Re = \rho U L / \mu \gg 1$ (Euler equations).

(c) Derive the Bernoulli equation from momentum conservation with the following hypothesis: one dimensional steady state conditions of a frictionless fluid $\mu = 0$.

Thanks for your time and attention